A newly discovered bifunctional antibiotic resistance enzyme from Serratia marcescens catalyzes adenylation and acetylation of aminoglycoside antibiotics. The structure assignment of the enzymic products indicated that acetylation takes place on the 6'-amine of kanamycin A and the adenylation on 3''- and 9-hydroxyl groups of streptomycin and spectinomycin, respectively. The adenyltransferase domain appears to be highly specific to spectinomycin and streptomycin, while the acetyltransferase domain shows a broad substrate profile. Initial velocity patterns indicate that both domains follow a sequential kinetic mechanism. The use of dead-end and product inhibition, the solvent isotope effect, and the solvent viscosity effect reveals that the adenyltransferase domain catalyzes the reaction by a Theorell-Chance kinetic mechanism, where ATP binds to the enzyme prior to the aminoglycoside and the modified antibiotic is the last product to be released. The acetyltransferase domain follows an ordered bi-bi kinetic mechanism, in which the antibiotic is the first substrate that binds to the active site and CoASH is released prior to the modified aminoglycoside. The merging of two genes to create bifunctional resistance enzymes with expanded profiles has now been documented in four instances, including the subject of study in this report, which suggests a new trend in the emergence of resistance to aminoglycoside antibiotics among pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi060723gDOI Listing

Publication Analysis

Top Keywords

kinetic mechanism
12
serratia marcescens
8
aminoglycoside antibiotics
8
adenyltransferase domain
8
acetyltransferase domain
8
characterization bifunctional
4
bifunctional aminoglycoside-modifying
4
aminoglycoside-modifying enzyme
4
enzyme ant3''-ii/aac6'-iid
4
ant3''-ii/aac6'-iid serratia
4

Similar Publications

Cellulose/covalent organic framework aerogel for efficient removal of Cr(VI): Performance and mechanism study.

Int J Biol Macromol

January 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China. Electronic address:

Cellulose composites have exceptional qualities, particularly in removing heavy metal ions. Nevertheless, these materials' poor mechanical qualities and the restricted exposure of surface-active sites reduce the effectiveness of their removal. The removal efficiency of adsorbent materials largely depends on their macroscopic structural characteristics.

View Article and Find Full Text PDF

In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery.

J Colloid Interface Sci

January 2025

School of Mechanical Engineering and Mechanics, School of Chemistry, Xiangtan University, Xiangtan 411105 PR China. Electronic address:

Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling.

View Article and Find Full Text PDF

This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.

View Article and Find Full Text PDF

Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!