An opposite role for tau in circadian rhythms revealed by mathematical modeling.

Proc Natl Acad Sci U S A

Huntsman Cancer Institute, Department of Oncological Sciences, and Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA.

Published: July 2006

Biological clocks with a period of approximately 24 h (circadian) exist in most organisms and time a variety of functions, including sleep-wake cycles, hormone release, bioluminescence, and core body temperature fluctuations. Much of our understanding of the clock mechanism comes from the identification of specific mutations that affect circadian behavior. A widely studied mutation in casein kinase I (CKI), the CKIepsilon(tau) mutant, has been shown to cause a loss of kinase function in vitro, but it has been difficult to reconcile this loss of function with the current model of circadian clock function. Here we show that mathematical modeling predicts the opposite, that the kinase mutant CKIepsilon(tau) increases kinase activity, and we verify this prediction experimentally. CKIepsilon(tau) is a highly specific gain-of-function mutation that increases the in vivo phosphorylation and degradation of the circadian regulators PER1 and PER2. These findings experimentally validate a mathematical modeling approach to a complex biological function, clarify the role of CKI in the clock, and demonstrate that a specific mutation can be both a gain and a loss of function depending on the substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1502281PMC
http://dx.doi.org/10.1073/pnas.0604511103DOI Listing

Publication Analysis

Top Keywords

mathematical modeling
12
loss function
8
circadian
5
function
5
opposite role
4
role tau
4
tau circadian
4
circadian rhythms
4
rhythms revealed
4
revealed mathematical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!