Infection with HIV-1, SIV, or simian HIV is associated with abnormalities in the number, size, and structure of germinal centers (GCs). To determine whether these histopathologic abnormalities are associated with abnormalities in Ab development, we analyzed nucleotide sequences of Igs from splenic GCs of simian HIV-infected macaques. Virus-specific GCs were identified in frozen splenic tissue sections by inverse immunohistochemistry using rHIV-1 gp120 as a probe. B cells from envelope-specific GCs were isolated from these sections using laser capture microdissection. Their Igs were amplified from cDNA using nested PCR, then cloned and sequenced. Nucleotide sequences were recovered from nine multimember clonal lineages. Within each lineage, sequences had similar V-D-J or V-J junctions but differed by somatic mutations distributed throughout the variable domain. The clones were highly mutated, similar to that previously reported for HIV-1-specific human IgG Abs. The average clone had 37 mutations in the V region, for a frequency of 0.11 mutations/base. The mutational pattern was strikingly nonrandom, with somatic mutations occurring preferentially at RGYW/WRCY hotspots. Transition mutations were favored over transversions, with C-->T and G-->A replacements together accounting for almost one-third of all mutations. Analysis of replacement and silent mutations in the framework and CDRs suggests that the Igs were subjected to affinity selection. These data demonstrate that the process of Ab maturation is not seriously disrupted in GCs during the early stages of immunodeficiency virus infection, and that Env-specific Igs developing in GCs are subject to extensive somatic mutation and profound selection pressures.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.177.2.1108DOI Listing

Publication Analysis

Top Keywords

simian hiv
8
associated abnormalities
8
nucleotide sequences
8
somatic mutations
8
gcs
6
mutations
6
germinal center
4
center function
4
function spleen
4
spleen simian
4

Similar Publications

The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.

View Article and Find Full Text PDF

Introduction: Rhesus macaques have long been a focus of research for understanding immune responses to human pathogens due to their close phylogenetic relationship with humans. As rhesus macaque antibody germlines show high degrees of polymorphism, the spectrum of database-covered genes expressed in individual macaques remains to be determined.

Methods: Here, four rhesus macaques infected with SHIV became a study of interest because they developed broadly neutralizing antibodies against HIV-1.

View Article and Find Full Text PDF

Purpose Of Review: Women are underrepresented in HIV infection and prevention research despite making up half of people living with HIV. The female genital tract (FGT) serves as a primary site of HIV acquisition, but gaps in knowledge remain regarding protective innate immune mechanisms. Innate lymphoid cells are tissue-resident cells involved in mucosal barrier maintenance and protection, and innate lymphoid cells (ILCs) are altered during chronic HIV infection.

View Article and Find Full Text PDF

Purpose Of Review: Typically, both HIV-infected humans and simian immunodeficiency virus (SIV)-infected Asian nonhuman primates (NHPs) eventually progress to AIDS, while African NHPs that are natural hosts of SIV do not, in spite of life-long, high levels of viral replication. Lack of disease progression in African NHPs is not due to some adaptation by the virus, but rather to host adaptations to the virus. Central to these adaptations is maintenance of the gut integrity during acute viral replication and inflammation, which allows natural hosts to avoid the chronic inflammation characteristic to pathogenic HIV/SIV infection.

View Article and Find Full Text PDF

Robust CD8 T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8 T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!