Purpose: The epidermal growth factor receptor (EGFR) inhibitor gefitinib (Iressa) has shown antitumor activity in clinical trials against cancers, such as non-small cell lung cancer and head and neck squamous cell carcinoma (HNSCC). Research on non-small cell lung cancer has elucidated factors that may predict response to gefitinib. Less is known about molecular markers that may predict response to gefitinib in HNSCC patients.

Experimental Design: We analyzed possible associations of responsiveness to gefitinib with molecular markers of the EGFR/ErbB receptor family signaling pathway using 10 established HNSCC lines in vitro. IC50 of gefitinib sensitivity was determined using clonogenic survival assays. ErbB signaling was assessed by Western and real-time reverse transcription-PCR analyses of EGFR, ErbB2, ErbB3, and ErbB4 expression levels as well as by phosphorylation analysis of pEGFR, pErbB2, pErbB3, pAkt, and pErk. EGFR sequences encoding kinase domain and EGFR gene copy numbers were determined by cDNA sequencing and real-time PCR, respectively. Finally, responsiveness to gefitinib was compared with responsiveness to the anti-EGFR antibody cetuximab (Erbitux).

Results: Expression levels of pErbB2 (P = 0.02) and total ErbB3 protein (P = 0.02) associated with resistance to gefitinib. Combining gefitinib with pertuzumab (Omnitarg), an antibody targeting ErbB2 heterodimerization, provided additional growth-inhibitory effect over gefitinib alone on relatively gefitinib-resistant HNSCC cell lines. The same markers did not predict resistance to cetuximab. In contrast, a similar trend suggesting association between EGFR gene copy number and drug sensitivity was observed for both gefitinib (P = 0.0498) and cetuximab (P = 0.053). No activating EGFR mutations were identified.

Conclusions: EGFR amplification may predict sensitivity to gefitinib in HNSCC. However, other EGFR/ErbB receptor family members than EGFR may contribute to resistance to gefitinib. ErbB2 and ErbB3 may have potential as predictive markers and as therapeutic targets for combination therapy in treatment of HNSCC with gefitinib.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-05-2404DOI Listing

Publication Analysis

Top Keywords

gefitinib
14
erbb2 erbb3
12
egfr
10
epidermal growth
8
growth factor
8
factor receptor
8
receptor egfr
8
egfr amplification
8
egfr inhibitor
8
inhibitor gefitinib
8

Similar Publications

Introduction: EGFR tyrosine kinase inhibitor (TKI)-induced rash can be alleviated with tetracyclines (TCN) and topical corticosteroids (TCS), whereas drugs for acid-related disorders (DARD) can affect EGFR TKI absorption. The present study investigated the concomitant use of TCNs, TCSs, and DARDs with EGFR-TKIs in non-small cell lung cancer (NSCLC) and whether these affect patient outcomes.

Methods: We retrospectively collected data from all patients (n=1498) who had purchased for EGFR TKIs (erlotinib, gefitinib, and afatinib) in Finland between 2011-2020.

View Article and Find Full Text PDF

[Savolitinib Induced Pathological Complete Response in Non-small Cell Lung Cancer with MET Amplification: A Case Report].

Zhongguo Fei Ai Za Zhi

November 2024

Department of Pulmonary Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300000, China.

Mesenchymal-epithelial transition factor (MET) gene mutation is a large class of mutations commonly seen in non-small cell lung cancer (NSCLC). MET mutation includes subtypes such as MET exon 14 skipping mutation (METex14m) and MET amplification (METamp). For advanced NSCLC with METex14m, Savolitinib has a high sensitivity as a member of tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

As a putative lung specific oncogene, the transducin-like enhancer of split 1 (TLE1) corepressor drives an anti-apoptotic and pro-epithelial-mesenchymal transition (EMT) gene transcriptional programs in human lung adenocarcinoma (LUAD) cells, thereby promoting anoikis resistance and tumor aggressiveness. Through its survival- and EMT-promoting gene regulatory programs, TLE1 may impact drug sensitivity and resistance in lung cancer cells. In the present study, a novel function of TLE1 was uncovered as an inhibitor of the antitumor effects of the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) gefitinib in the human LUAD cell line A549, which exhibits moderate sensitivity to EGFR-TKI.

View Article and Find Full Text PDF

Five phenolic Schiff bases (-) incorporating a fragment of methanesulfonamide were synthesized and evaluated for their efficacy as antitumor agents. Compounds and demonstrated the most potent antitumor action, with a positive cytotoxic effect (PCE) of 54/59 and 59/59 and a mean growth percentage (MG%) of 67.3% and 19.

View Article and Find Full Text PDF

Background/objectives: Osimertinib is a standard sequential therapy for advanced and recurrent Epidermal Growth Factor Receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients with the T790M mutation, following treatment with first- or second-generation EGFR Tyrosine Kinase Inhibitors (TKIs). This study aims to investigate the differences in clinical outcomes between osimertinib as a 2nd-line treatment and as a ≥3rd-line treatment in this patient population.

Methods: Between September 2014 and March 2023, we enrolled advanced and recurrent T790M + NSCLC patients who had received osimertinib as sequential treatment for analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!