Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia.

Cancer Res

Cancer Research UK Colorectal Tumour Biology Research Group, Department of Cellular and Molecular Medicine, Faculty of Medical and Veterinary Science, Bristol University, Bristol BS8 1TD, United Kingdom.

Published: July 2006

Cyclooxygenase (COX)-2, the inducible key enzyme for prostanoid biosynthesis, is overexpressed in most colorectal carcinomas and a subset of colorectal adenomas. Genetic, biochemical, and clinical evidence indicates an important role for COX-2 in colorectal tumorigenesis. Although COX-2 can be induced by aberrant growth factor signaling and oncogene activation during colorectal tumorigenesis, the role of microenvironmental factors such as hypoxia in COX-2 regulation remains to be elucidated. For the first time, we report that under hypoxic conditions COX-2 protein levels increase in colorectal adenoma and carcinoma cells. Rigorous analyses reveal that COX-2 up-regulation is transcriptional and is associated with hypoxia-inducible factor (HIF)-1alpha induction. Oligonucleotide pull-down and chromatin immunoprecipitation assays reveal that HIF-1alpha binds a hypoxia-responsive element on the COX-2 promoter. COX-2 up-regulation during hypoxia is accompanied by increased levels of prostaglandin E(2) (PGE(2)), which promote tumor cell survival under hypoxic conditions. In addition, elevated levels of PGE(2) in hypoxic colorectal tumor cells enhance vascular endothelial growth factor expression and HIF-1 transcriptional activity by activating the mitogen-activated protein kinase pathway, showing a potential positive feedback loop that contributes to COX-2 up-regulation during hypoxia. This study identifies COX-2 as a direct target for HIF-1 in colorectal tumor cells. In addition, COX-2 up-regulation represents a pivotal cellular adaptive response to hypoxia with implication for colorectal tumor cell survival and angiogenesis. We propose that using modified COX-2-selective inhibitors, which are only activated under hypoxic conditions, could potentially be a novel more selective strategy for colorectal cancer prevention and treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-06-0425DOI Listing

Publication Analysis

Top Keywords

colorectal tumor
16
cox-2 up-regulation
16
tumor cell
12
cell survival
12
hypoxic conditions
12
cox-2
11
colorectal
10
hypoxia-inducible factor
8
hif-1 transcriptional
8
transcriptional activity
8

Similar Publications

-polarized M2-like tumor-associated macrophages accelerate colorectal cancer development via IL-8 secretion.

Anim Cells Syst (Seoul)

December 2024

Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.

(), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system.

View Article and Find Full Text PDF

Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages.

Theranostics

January 2025

Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

In this chapter, we present a detailed protocol for establishing a three-dimensional (3D) multicellular tumor spheroids (MCTSs) model to simulate the tumor microenvironment (ME) associated with metabolic dysfunction-associated steatotic liver disease (MASLD) for the study of hepatocellular carcinoma (HCC) and colorectal cancer (CRC) cell aggressiveness, growth, and metastasis potential. The MASLD microenvironment (MASLD-ME) is recreated by embedding hepatic stellate cells in a collagen I matrix within a Boyden chamber system. The metabolic medium mimics MASLD conditions, enriched with high glucose, fructose, insulin, and fatty acids, to simulate metabolic stresses associated with the disease.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocyte (TIL) density is both a prognostic and a predictive factor in colorectal cancer (CRC). Whether the heterogeneity of TIL density across the tumor plays an important role in the clinical outcome of CRC is not well known. Adjuvant chemotherapy-treated patients with stage III CRC were analyzed for survival according to TIL density and density heterogeneity, which were determined on CD8-immunostained slides using a machine learning method and by calculating the Simpson evenness index, respectively.

View Article and Find Full Text PDF

Background: Accurate endoscopic characterization of colorectal lesions is essential to predict histology and select the best treatment strategy but remains very difficult. Instead of the recommended endoscopic characterization, many gastroenterologists routinely perform biopsies of the lesion to propose endoscopic resection with or without R0 intent. The aim of this study was to determine which of endoscopic characterization or biopsies, either targeted (TB) or non-targeted (NTB), is the most effective to determine the best treatment strategy for colorectal neoplasia > 2 cm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!