Oncostatin M has been characterized as a potent growth inhibitor for various tumor cells. Oncostatin M-treated glioblastoma cells cease proliferation and instigate astrocytal differentiation. The oncostatin M-induced cell cycle arrest in G(1) phase is characterized by increased level of the cyclin-dependent kinase (CDK) inhibitory proteins p21(Cip1/Waf1/Sdi1) and p27(Kip1). Induction of p21 protein corresponds to increased mRNA level, whereas p27 accumulates due to increased stability of the protein. Interestingly, stabilization of p27(Kip1) occurs even in S phase, showing that p27 stabilization is a direct consequence of oncostatin M signaling and not a result of the cell cycle arrest. Degradation of p27 in late G(1) and S phase is initiated by the ubiquitin ligase complex SCF-Skp2/Cks1. Oncostatin M inhibits expression of two components of this E3 ligase complex (Skp2 and Cks1). Although combined overexpression of Skp2 and Cks1 rescues p27 degradation in S phase, it can not override p27 accumulation in G(1) phase and cell cycle arrest by oncostatin M. In addition to increasing Cdk inhibitor level, oncostatin M also impairs cyclin A expression. Cyclin A mRNA and protein level decline shortly after oncostatin M addition. The accumulation of two CDK inhibitor proteins and the repression of cyclin A expression may explain the broad and potent antiproliferative effect of the cytokine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-04-3734 | DOI Listing |
J Med Chem
September 2024
Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
Skp1-CUL1-ROC1-F-box E3 ubiquitin ligases' main component S-phase kinase-associated protein 2 (Skp2) is responsible for specifically recognizing ubiquitination-modified substrates to be degraded such as p27 and p21 in the case of binding with adaptor protein Cks1. Pharmacological inhibition of Skp2 has exhibited promising antitumor activity. Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-]pyrimidine-based small molecules targeting Skp2.
View Article and Find Full Text PDFSci Rep
July 2023
Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
p27KIP1 (cyclin-dependent kinase inhibitor 1B, p27) is a member of the CIP/KIP family of CDK (cyclin dependent kinase) regulators that inhibit cell cycle CDKs. p27 phosphorylation by CDK1/2, signals its recruitment to the SCF (S-phase kinase associated protein 1 (SKP1)-cullin-SKP2) E3 ubiquitin ligase complex for proteasomal degradation. The nature of p27 binding to SKP2 and CKS1 was revealed by the SKP1-SKP2-CKS1-p27 phosphopeptide crystal structure.
View Article and Find Full Text PDFJ Med Chem
June 2023
Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
F-box protein S-phase kinase-associated protein 2 (Skp2) is a component of cullin-RING ligases, which is responsible for recruiting and ubiquitinating substrates and subsequently plays its proteolytic and non-proteolytic role. High expression of Skp2 is frequently observed in multiple aggressive tumor tissues and associated with poor prognosis. Several of the Skp2 inhibitors have been reported in the last decades; however, few of them have shown detailed structure-activity relationship (SAR) and potent bioactivity.
View Article and Find Full Text PDFMetabolites
December 2022
Department of Medical and Surgical Sciences and Pharmacy, University of Sassari, Via P. Manzella 4, 07100 Sassari, Italy.
Liver preneoplastic and neoplastic lesions of the genetically susceptible F344 and resistant BN rats cluster, respectively, with human HCC with better (HCCB) and poorer prognosis (HCCP); therefore, they represent a valid model to study the molecular alterations determining the genetic predisposition to HCC and the response to therapy. The ubiquitin-mediated proteolysis of ERK-inhibitor DUSP1, which characterizes HCC progression, favors the unrestrained ERK activity. DUSP1 represents a valuable prognostic marker, and ERK, CKS1, or SKP2 are potential therapeutic targets for human HCC.
View Article and Find Full Text PDFBr J Cancer
October 2022
Department of Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
Proteins that regulate the cell cycle are accumulated and degraded in a coordinated manner during the transition from one cell cycle phase to the next. The rapid loss of a critical protein, for example, to allow the cell to move from G1/G0 to S phase, is often regulated by its ubiquitination and subsequent proteasomal degradation. Protein ubiquitination is mediated by a series of three ligases, of which the E3 ligases provide the specificity for a particular protein substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!