Cyclin E, an activator of cyclin-dependent kinase 2 (Cdk2), is targeted for proteasomal degradation by phosphorylation-dependent multiubiquitylation via the ubiquitin ligase SCF(hCdc4). SCF ubiquitin ligases are composed of a core of conserved subunits and one variable subunit (an F box protein) involved in substrate recognition. We show here that multiubiquitylation of cyclin E requires the sequential function of two distinct splice variant isoforms of the F box protein hCdc4 known as alpha and gamma. SCF(hCdc4alpha) binds a complex containing cyclin E, Cdk2, and the prolyl cis/trans isomerase Pin1 and promotes the activity of Pin1 without directly ubiquitylating cyclin E. However, due to the action of this SCF(hCdc4alpha)-Pin1 complex, cyclin E becomes an efficient ubiquitylation substrate of SCF(hCdc4gamma). Furthermore, in the context of Cdc4alpha and cyclin E, mutational data suggest that Pin1 isomerizes a noncanonical proline-proline bond, with the possibility that Cdc4alpha may serve as a cofactor for altering the specificity of Pin1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2006.05.020DOI Listing

Publication Analysis

Top Keywords

cyclin requires
8
requires sequential
8
sequential function
8
box protein
8
complex cyclin
8
cyclin
6
ubiquitylation cyclin
4
function scf
4
scf complexes
4
complexes distinct
4

Similar Publications

SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition.

Sci Adv

January 2025

Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.

View Article and Find Full Text PDF

An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.

View Article and Find Full Text PDF

CDK5: Insights into its roles in diseases.

Mol Biol Rep

January 2025

Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China.

Cyclin-dependent kinase 5 (CDK5), a unique member of the CDK family, is a proline-directed serine/threonine protein kinase with critical roles in various physiological and pathological processes. Widely expressed in the central nervous system, CDK5 is strongly implicated in neurological diseases. Beyond its neurological roles, CDK5 is involved in metabolic disorders, psychiatric conditions, and tumor progression, contributing to processes such as proliferation, migration, immune evasion, genomic stability, and angiogenesis.

View Article and Find Full Text PDF

5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.

View Article and Find Full Text PDF

The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!