Deeply buried marine sediments harbour a large fraction of all prokaryotes on Earth but it is still unknown which phylogenetic and physiological microbial groups dominate the deep biosphere. In this study real-time PCR allowed a comparative quantitative microbial community analysis in near-surface and deeply buried marine sediments from the Peru continental margin. The 16S rRNA gene copy numbers of prokaryotes and Bacteria were almost identical with a maximum of 10(8)-10(10) copies cm(-3) in the near-surface sediments. Archaea exhibited one to three orders of magnitude lower 16S rRNA gene copy numbers. The 18S rRNA gene of Eukarya was always at least three orders of magnitude less abundant than the 16S rRNA gene of prokaryotes. The 16S rRNA gene of the Fe(III)- and Mn(IV)-reducing bacterial family Geobacteraceae and the dissimilatory (bi)sulfite reductase gene (dsrA) of sulfate-reducing prokaryotes were abundant with 10(6)-10(8) copies cm(-3) in near-surface sediments but showed lower numbers and an irregular distribution in the deep sediments. The copy numbers of all genes decreased with sediment depth exponentially. The depth gradients were steeper for the gene copy numbers than for numbers of total prokaryotes (acridine orange direct counts), which reflects the ongoing degradation of the high-molecular-weight DNA with sediment age and depth. The occurrence of eukaryotic DNA also suggests DNA preservation in the deeply buried sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-2920.2006.01019.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!