Phosphorylation of the mycobacterial transcriptional activator, EmbR, is essential for transcriptional regulation of the embCAB operon encoding cell wall arabinosyltransferases. This signaling pathway eventually affects the resistance to ethambutol (a frontline antimycobacterial drug) and the cell wall Lipoarabinomannan/Lipomannan ratio (an important determinant for averting the host immune response). In this study, further biochemical characterization revealed that EmbR, as a transcriptional regulator, interacts with RNA polymerase and possesses a phosphorylation-dependent ATPase activity that might play a role in forming an open complex between EmbR and RNA polymerase. EmbR was recently shown to be phosphorylated by the cognate mycobacterial serine/threonine (Ser/Thr) kinase, PknH. Using bioinformatic analysis and in vitro assays, we identified additional novel regulators of the signaling pathway leading to EmbR phosphorylation, namely the Ser/Thr protein kinases PknA and PknB. A previously unresolved question raised by this signaling scheme is the fate of phosphorylated kinases and EmbR at the end of the signaling cycle. Here we show that Mstp, a mycobacterial Ser/Thr phosphatase, antagonizes Ser/Thr protein kinase-EmbR signaling by dephosphorylating Ser/Thr protein kinases, as well as EmbR, in vitro. Additionally, dephosphorylation of EmbR reduced its ATPase activity, interaction with Ser/Thr protein kinases and DNA-binding activity, emphasizing the antagonistic role of Mstp in the EmbR-Ser/Thr protein kinase signaling system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2006.05289.x | DOI Listing |
J Pept Sci
March 2025
Department of Pharmaceutical Engineering, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan Province, China.
Short neuropeptide F (sNPF) is an insect-specific neuropeptide named for its C-terminal phenylalanine. It consists of 6-19 amino acids with a conserved RLRFa structure, regulating feeding, growth, circadian rhythms, and water-salt balance in insects. Its receptor belongs to GPCR-As and binds sNPF to regulate the insect nervous system.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
The structural groups of 2-oxindole and tricyclic 3a-hydroxy-hexahydropyrrolo-[2,3-]indole (HO-HPI) are important pharmacophores. Chemical synthesis of complex alkaloids containing a 2-oxindole or HO-HPI moiety, especially the latter one, has been a long-standing challenge. Herein, we characterized the P450 enzyme AfnD, and its homologue proteins, HmtT, ClpD, KtzM, and LtzR, as cyclopeptide 2-oxindole and HO-HPI monooxygenases (cpOPMOs) that could introduce a 2-oxindole or HO-HPI moiety into the tryptophan-containing cyclopeptides in a pH-dependent manner.
View Article and Find Full Text PDFEur J Med Chem
February 2025
Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA. Electronic address:
PDHK1 is a non-canonical Ser/Thr kinase that negatively regulates the pyruvate dehydrogenase complex (PDC), restricting entry of acetyl-CoA into the tricarboxylic acid (TCA) cycle and downregulating oxidative phosphorylation. In many glycolytic tumors, PDHK1 is overexpressed to suppress activity of the PDC and cause a shift in metabolism toward an increased reliance on glycolysis (the Warburg effect). Genetic studies have shown that knockdown or knockout of PDHK1 reverts this phenotype and inhibits tumor growth in vitro and in vivo, but chemical tools to pharmacologically validate and build upon these data are lacking.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Chemistry and Biochemistry, California State University Northridge, CA, 91330, USA. Electronic address:
The endocannabinoid signaling system is comprised of CB1 and CB2 G protein-coupled receptors (GPCRs). CB2 receptor subtype is predominantly expressed in the immune cells and signals through its transducer proteins (Gi protein and β-arrestin-2). Arrestins are signaling proteins that bind to many GPCRs after receptor phosphorylation to terminate G protein signaling (desensitization) and to initiate specific G protein-independent arrestin-mediated signaling pathways via a "phosphorylation barcode", that captures sequence patterns of phosphorylated Ser/Thr residues in the receptor's intracellular domains and can lead to different signaling effects.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Proteome Center Tübingen, Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
Klebsiella pneumoniae belongs to the group of bacterial pathogens causing the majority of antibiotic-resistant nosocomial infections worldwide; however, the molecular mechanisms underlying post-translational regulation of its physiology are poorly understood. Here we perform a comprehensive analysis of Klebsiella phosphoproteome, focusing on HipA, a Ser/Thr kinase involved in antibiotic tolerance in Escherichia coli. We show that overproduced K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!