The pathogenesis of stroke, trauma and chronic degenerative diseases, such as Alzheimer's disease (AD), has been linked to excitotoxic processes due to inappropriate stimulation of the N-methyl-D-aspartate receptor (NMDA-R). Attempts to use potent competitive NMDA-R antagonists as neuroprotectants have shown serious side-effects in patients. As an alternative approach, we were interested in the anti-excitotoxic properties of memantine, a well-tolerated low affinity uncompetitive NMDA-R antagonist presently used as an anti-dementia agent. We explored in a series of models of increasing complexity, whether this voltage-dependent channel blocker had neuroprotective properties at clinically relevant concentrations. As expected, memantine protected neurons in organotypic hippocampal slices or dissociated cultures from direct NMDA-induced excitotoxicity. However, low concentrations of memantine were also effective in neuronal (cortical neurons and cerebellar granule cells) stress models dependent on endogenous glutamate stimulation and mitochondrial stress, i.e. exposure to hypoxia, the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+) or a nitric oxide (NO) donor. Furthermore, memantine reduced lethality and brain damage in vivo in a model of neonatal hypoxia-ischemia (HI). Finally, we investigated functional rescue (neuronal capacity to migrate along radial glia) by memantine in cerebellar microexplant cultures exposed to the indirect excitotoxin 3-nitropropionic acid (3-NP). Potent NMDA-R antagonists, such as (+)MK-801, are known to block neuronal migration in microexplant cultures. Interestingly, memantine significantly restored the number of neurons able to migrate out of the stressed microexplants. These findings suggest that inhibition of the NMDA-R by memantine is sufficient to block excitotoxicity, while still allowing some degree of signalling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2006.04787.x | DOI Listing |
Alzheimers Dement
December 2024
National Council of Scientific and Technical Research (CONICET/UNLP), La Plata, Argentina.
Background: Sporadic Alzheimer's disease (sAD) is the most common form of dementia, characterized by a progressive decline in cognitive function and, cortical and hippocampal atrophy. Our objective is to develop neuroprotective therapies that promote the homeostatic and modulatory properties of astrocytes, and enhance their protective functions. Glial-derived neurotrophic factor (GDNF) has emerged as a promising factor for its ability to promote neuronal survival and function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Despite recent FDA approvement of disease-modifying treatments that reduce Aβ, the identification of novel therapeutic strategies that could delay the Alzheimer's disease (AD) development are needed. We identified and developed novel small molecule compounds that mildly inhibit mitochondrial complex I (MCI). Chronic treatment with a tool compound CP2 in 4 mouse models of familial AD was efficacious protecting against synaptic dysfunction and memory impairment, improving brain energetics and cognitive performance, reducing levels of human pTau and Ab.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
Background: Doxorubicin (Dox), a chemotherapeutic agent, is known to cause chemobrain leading to cognitive decline and brain mitochondrial dysfunction. Ivabradine (Iva), hyperpolarization-activated cyclic nucleotide-gated channel blocker used for angina and arrhythmia, has been shown to be an anticonvulsant, antioxidant, and neuroprotective agent. However, the effects of Iva on cognitive function, and brain mitochondrial function in Dox-induced chemobrain are still not determined.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California Davis Medical Center, Sacramento, CA, USA.
Background: Inflammation is crucial in Alzheimer's Disease (AD), where oxidized lipid derivatives of polyunsaturated fatty acids (PUFAs), i.e., oxylipins, are potent modulators.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India.
Background: The current study aimed to investigate the chemical interaction of naringenin with the possible receptors and enzymes involved in the pathogenesis of cognitive deficits and tested their ADME and toxicity. Furthermore, in-vivo studies have also done to evaluate the effect of naringenin and its nanoparticles on STZ-induced cognitive decline in mice.
Method: Naringenin were evaluated against the active sites of β-secretase 1 (PDB: 3UQU), human insulin-degrading enzyme (PDB: 4RE9), insulin receptor tyrosine kinase (PDB: 1IR3), glycogen synthase kinase-3 β (PDB: 3L1S), phosphoprotein phosphatase 2A (PDB: 3P71), human superoxide dismutase I (PDB: 5YT0), catalase-3 (PDB:3EJ6), and human acetylcholinesterase (PDB: 4EY7) in comparison of rivastigmine using molecular docking studies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!