Translational and rotational accelerations from blunt head impact can induce excessive brain strain and cause traumatic brain injuries. However, it is not clear which acceleration plays a major role in the mechanism. The current study used the SIMon human finite element head model (FEHM) and delineated the contributions of these accelerations using post mortem human subject (PMHS) lateral head impact experimental data. Results indicated that rotational acceleration contributes more than 90% of total strain, and translational acceleration produces minimal strain. Therefore, the rotational component is a more important biomechanical metric in this study.

Download full-text PDF

Source

Publication Analysis

Top Keywords

head impact
12
translational rotational
8
rotational accelerations
8
brain strain
8
lateral head
8
role translational
4
rotational
4
accelerations brain
4
strain
4
strain lateral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!