Commonly considered a continuum of injuries, diffuse brain injury (DBI) ranges from mild concussion to severe diffuse axonal injury. The lower end of the spectrum is generally referred to as mild traumatic brain injury (MTBI). More severe forms of DBI have garnered extensive experimentation while these milder cases are considerably less explored. Recently, a new device was designed to generate DBI in the rodent using impact-induced angular acceleration. This device is modifiable so the entire spectrum of DBI can be investigated. Severity of DBI is critically dependent on magnitude of angular acceleration. A small animal surrogate like a rodent has a relatively small brain mass. This constraint poses a unique problem because the angular acceleration necessary for DBI is inversely related to brain mass. Prior experimentation estimated an angular acceleration of approximately 350 krad/s2 is necessary for the induction of mild traumatic brain injury (MTBI) in the rodent. To induce these magnitudes of angular acceleration in a repeatable manner, the impacting interface must be critically analyzed. This investigation uses a mathematical model based on parameters of a previously developed experimental model to assess the impacting interface such that angular accelerations are sufficient to produce MTBI in the rodent.
Download full-text PDF |
Source |
---|
Front Bioeng Biotechnol
January 2025
Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States.
Introduction: Research on head impact characteristics, especially position-specific investigations in football, has predominantly focused on collegiate and professional levels, leaving a gap in understanding the risks faced by high school players. Therefore, this study aimed to investigate the effect of three factors-player position, impact location, and impact type-on the frequency, severity, and characteristics of impacts in high school American football. Additionally, we examined whether and how player position influences the distribution of impact locations and types.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.
Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO).
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Laboratory of Otoneurology British Hospital, Montevideo, Uruguay.
Background: Gait instability and falls significantly impact life quality and morbi-mortality in elderly populations. Early diagnosis of gait disorders is one of the most effective approaches to minimize severe injuries.
Objective: To find a gait instability pattern in older adults through an image representation of data collected by a single sensor.
The present study analyzed the kinematic changes under fatigue in highly trained adolescent swimmers during a 50-m all-out front cwal test. Twenty-four girls and fourteen boys aged 12-13 participated in the study. The movement of the hip rim was analyzed using a specialized inertial device equipped with a triaxial gyroscope and accelerometer to measure changes in angular velocity and acceleration.
View Article and Find Full Text PDFPhysiol Meas
January 2025
Faculty of Sciences, University of Coimbra, Palacio de las Escuelas 3004-531, Coimbra, 3004-504, PORTUGAL.
Objective: The detection of arterial pulsating signals at the skin periphery with Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or gyroscope) which to date have demonstrated the best pulsating signal reconstruction.
Approach: A generative adversarial network with fully connected layers (FC-GAN) is proposed for the reconstruction of distorted PPG signals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!