In intestine, 24,25(OH)(2)D(3), which is made under conditions of calcium-, phosphate-, and 1,25(OH)(2)D(3) sufficiency, inhibits the stimulatory actions of 1,25(OH)(2)D(3) on phosphate and calcium absorption. In the current work, we provide evidence that 24,25(OH)(2)D(3)-mediated signal transduction occurs mechanistically through increased H(2)O(2) production which involves binding of 24,25(OH)(2)D(3) to catalase and resultant decreases in enzyme activity. Physiological levels of H(2)O(2) mimicked the action of 24,25(OH)(2)D(3) on inhibiting 1,25(OH)(2)D(3)-stimulated phosphate uptake in isolated enterocytes. Moreover, the molecular basis of such inhibition was suggested by the presence of two thioredoxin domains in the 1,25D(3)-MARRS protein/ERp57: Exposure of cells to either 24,25(OH)(2)D(3) or H(2)O(2) gradually reduced 1,25(OH)(2)D(3) binding to 1,25D(3)-MARRS protein, between 10 and 20 min of incubation, but not to VDR. Feeding studies with diets enriched in the antioxidants vitamins C and E showed that net phosphate absorption in vivo nearly doubled relative to chicks on control diet. Antioxidant diets also resulted in increased [(3)H]1,25(OH)(2)D(3) binding to both 1,25D(3)-MARRS and VDR, suggesting benefits to both transcription- and membrane-initiated signaling pathways. Intriguingly, phosphorous content of bones from birds on antioxidant diets was reduced, suggesting increased osteoclast activity. Because mature osteoclasts lack VDR, we analyzed a clonal osteoclast cell line by RT-PCR and found it contained the 1,25D(3)-MARRS mRNA. The combined data provide mechanistic details for the 1,25(OH)(2)D(3)/24,25(OH)(2)D(3) endocrine system, and point to a role for the 1,25D(3)-MARRS protein as a redox-sensitive mediator of osteoclast activity and potential therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.21008 | DOI Listing |
Sci Data
December 2024
Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.
View Article and Find Full Text PDFBMC Microbiol
December 2024
College of Agriculture and Forestry, Linyi University, Linyi, 276005, Shandong, China.
Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Bioinformatics, School of Life Sciences Pondicherry University, Puducherry, India.
Flavin adenine nucleotide (FAD)-dependent oxidoreductase enzyme Alcohol oxidase (AOX) facilitates the growth of methylotrophic yeast C. boidinii by catabolizing methanol, producing formaldehyde and hydrogen peroxide. Vacuolar Protease-A (PrA) from C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!