Due to their extensive structural heterogeneity, the elucidation of glycosylation patterns in glycoproteins such as the subunits of human chorionic gonadotropin (hCG), hCG-alpha, and hCG-beta, remains one of the most challenging problems in the proteomic analysis of post-translational modifications. In consequence, glycosylation is usually studied after decomposition of the intact proteins to the proteolytic peptide level. However, by this approach all information about the combination of the different glycopeptides in the intact protein is lost. In this study we have, therefore, attempted to combine the results of glycan identification after tryptic digestion with molecular mass measurements on the native starting material of the new first WHO Reference Reagents (RR) for hCG-alpha (99/720) and hCG-beta (99/650). Despite the extremely high number of possible combinations of the glycans identified in the tryptic peptides by HPLC-MS (>1000 for hCG-alpha and >10 000 for hCG-beta), the mass spectra of intact hCG-alpha and hCG-beta revealed only a limited number of glycoforms present in hCG preparations from pools of pregnancy urines. Peak annotations for hCG-alpha were performed with the help of a bioinformatic algorithm that generated a database containing all possible modifications of the proteins, including modifications possibly introduced during sample preparation such as oxidation or truncation, for subsequent searches for combinations fitting the mass difference between the polypeptide backbone and the measured molecular masses. Fourteen different glycoforms of hCG-alpha, containing biantennary, partly sialylized hybrid-type glycans, including methionine-oxidized and N-terminally truncated forms, were identified. Mass spectra of high quality were also obtained for hCG-beta, however, a database search mass accuracy of +/-5 Da was insufficient to unambiguously assign the possible combinations of post-translational modifications. In summary, mass spectrometric fingerprints of intact molecules were shown to be highly useful for the characterization of glycosylation patterns of different hCG preparations such as the new first WHO RR for immunoassays and could be the first step in establishing biophysical reference methods for hCG and related molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200600022DOI Listing

Publication Analysis

Top Keywords

glycosylation patterns
12
human chorionic
8
chorionic gonadotropin
8
hcg-alpha hcg-beta
8
post-translational modifications
8
mass spectra
8
hcg preparations
8
hcg-alpha
6
mass
6
hcg-beta
5

Similar Publications

For decades, extensive surfactant libraries have been developed to meet the requirements of downstream applications. However, achieving functional diversity has traditionally demanded a vast array of chemical motifs and synthetic pathways. Herein, a new approach for surfactant design based on structural isomerism is utilised to access a wide spectrum of functionalities.

View Article and Find Full Text PDF

Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.

View Article and Find Full Text PDF

Background: With the expiration of patents for multiple biotherapeutics, biosimilars are gaining traction globally as cost-effective alternatives to the original products. Glycosylation, a critical quality attribute, makes glycosimilarity assessment pivotal for biosimilar development. Given the complexity of glycoanalytical profiles, assessing glycosimilarity is nontrivial.

View Article and Find Full Text PDF

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

O-Protected oxacarbenium ions are key intermediates of glycosylation reactions. The knowledge of their conformational preferences is crucial for choosing the correct blocking group pattern to achieve the required stereochemical outcome. This article describes a computational study of several glucosyl oxacarbenium cations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!