A novel role for Rad53 in the initiation of DNA replication that is independent of checkpoint or deoxynucleotide regulation is proposed. Rad53 kinase is part of a signal transduction pathway involved in the DNA damage and replication checkpoints, while Cdc7-Dbf4 kinase (DDK) is important for the initiation of DNA replication. In addition to the known cdc7-rad53 synthetic lethality, rad53 mutations suppress mcm5-bob1, a mutation in the replicative MCM helicase that bypasses DDK's essential role. Rad53 kinase activity but neither checkpoint FHA domain is required. Conversely, Rad53 kinase can be activated without DDK. Rad53's role in replication is independent of both DNA and mitotic checkpoints because mutations in other checkpoint genes that act upstream or downstream of RAD53 or in the mitotic checkpoint do not exhibit these phenotypes. Because Rad53 binds an origin of replication mainly through its kinase domain and rad53 null mutants display a minichromosome loss phenotype, Rad53 is important in the initiation of DNA replication, as are DDK and Mcm2-7 proteins. This unique requirement for Rad53 can be suppressed by the deletion of the major histone H3/H4 gene pair, indicating that Rad53 may be regulating initiation by controlling histone protein levels and/or by affecting origin chromatin structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1569810PMC
http://dx.doi.org/10.1534/genetics.106.060236DOI Listing

Publication Analysis

Top Keywords

dna replication
16
rad53
12
initiation dna
12
rad53 kinase
12
novel role
8
role rad53
8
rad53 initiation
8
replication independent
8
replication
7
kinase
6

Similar Publications

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.

View Article and Find Full Text PDF

Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth.

View Article and Find Full Text PDF

Measuring XNA polymerase fidelity in a hydrogel particle format.

Nucleic Acids Res

January 2025

Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.

Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.

View Article and Find Full Text PDF

The N6-methyladenine (6mA) modification is an essential epigenetic marker and plays a crucial role in processes, such as DNA repair, replication, gene expression regulation, etc. YerA from Bacillus subtilis is considered a novel class of enzymes capable of catalyzing the deamination of 6mA to produce hypoxanthine. Despite the significance of this type of enzymes in bacterial self-defense systems and potential applications as a gene-editing tool, the substrate specificity, the catalytic mechanism and the physiological function of YerA are currently unclear due to the lack of structural information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!