HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets.

Proc Natl Acad Sci U S A

Immunology and Virology Laboratory and Proteomics Laboratory, Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome, Singapore.

Published: July 2006

Type I IFNs induce the expression of IFN-stimulated gene 15 (ISG15) and its conjugation to cellular targets. ISGylation is a multistep process involving IFN-inducible Ube1L, UbcH8, and a yet-to-be identified E3 ligase. Here we report the identification of an IFN-induced HECT-type E3 protein ligase, HERC5/Ceb1, which mediates ISGylation. We also defined a number of proteins modified by ISG15 after IFN triggering or HERC5 overexpression. A reduction in endogenous HERC5 by small interfering RNA inhibition blocks the IFN-induced ISG15 conjugation. Conversely, HERC5 coexpression with Ube1L and UbcH8 induces the ISG15 conjugation in vivo independent of IFN stimulation. A targeted substitution of Cys-994 to Ala in the HECT domain of HERC5 completely abrogates its E3 protein ligase activity. Therefore, this study demonstrates that HERC5/Ceb1 is involved in the conjugation of ISG15 to cellular proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1484417PMC
http://dx.doi.org/10.1073/pnas.0600397103DOI Listing

Publication Analysis

Top Keywords

protein ligase
12
isg15 conjugation
12
ifn-induced hect-type
8
hect-type protein
8
ube1l ubch8
8
herc5
5
isg15
5
herc5 ifn-induced
4
protein
4
ligase
4

Similar Publications

Nuclear Receptor Subfamily 4 Group A Member 3: A Potential Marker of Endometriosis.

Discov Med

December 2024

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, 610017 Chengdu, Sichuan, China.

Background: Nuclear receptor subfamily 4 group A member 3 () is lowly expressed in ectopic endometrium and can be degraded by ubiquitination in vascular endothelial cells. Murine double minute 2 () is predicted to be the ubiquitin ligase of . Hence, we investigated the effects of and on endometriosis and clarified corresponding regulatory mechanisms.

View Article and Find Full Text PDF

Background: Atherosclerosis, a chronic inflammatory condition characterized by the accumulation of lipid and fibrous elements in the arterial wall, is a major contributor to cardiovascular disease. This study aimed to investigate the regulation of apoptosis and cellular aging in human umbilical vein endothelial cells by Thousand and One Amino Acid Kinase 1 (TAOK1) via Cell division cycle 20 () in the context of atherosclerosis.

Methods: The study evaluated the impact of TAOK1 on Oxidized low-density lipoprotein (ox-LDL)-induced changes in cell viability, angiogenesis, cell senescence, apoptosis, cell cycle arrest, and related signaling pathways in human umbilical vein endothelial cells (HUVECs) using Cell Counting Kit-8, β-galactosidase staining, flow cytometry, and western blot.

View Article and Find Full Text PDF

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

PTGES3 proteolysis using the liposomal peptide-PROTAC approach.

Biol Direct

December 2024

Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.

Background: Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide, and the lack of effective biomarkers for early detection leads to poor therapeutic outcomes. Prostaglandin E Synthase 3 (PTGES3) is a putative prognostic marker in many solid tumors; however, its expression and biological functions in HCC have not been determined. The proteolysis-targeting chimera (PROTAC) is an established technology for targeted protein degradation.

View Article and Find Full Text PDF

Fas has been shown to positively regulate the differentiation of T helper 17 (Th17) cells in mouse models of experimental autoimmune encephalomyelitis (EAE). Fas protein expression is regulated by ubiquitination but has not been further studied. In this study, we investigated the role of the Fas ubiquitin ligase in Th17 cell differentiation and highlighted its potential as a therapeutic target for EAE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!