CYP2A13 in human respiratory tissues and lung cancers: an immunohistochemical study with a new peptide-specific antibody.

Drug Metab Dispos

School of Public Health, Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey, Room 385, 683 Hoes Lane West, Piscataway, NJ 08854, USA.

Published: October 2006

Human cytochrome P450 2A13 (CYP2A13) is highly efficient in the metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and another potent carcinogen, aflatoxin B1 (AFB1). Although previous studies demonstrated that CYP2A13 mRNA is predominantly expressed in human respiratory tissues, expression of CYP2A13 protein in these tissues and the involved cell types have not been determined because of the lack of CYP2A13-specific antibodies. To explore the toxicological and physiological function of CYP2A13, it is important to understand the tissue/cellular distribution of CYP2A13 protein. In this study, we generated a peptide-specific antibody against human CYP2A13 and demonstrated by immunoblot analysis that this antibody does not cross-react with heterologously expressed human CYP2A6 and mouse CYP2A5 proteins, both sharing a high degree of amino acid sequence similarity with CYP2A13. Nor does the antibody cross-react with heterologously expressed human CYP3A4, CYP2S1, or any of the cytochrome P450 enzymes present in the human liver microsomes. Using this highly specific antibody for immunohistochemical staining, we detected a high level of CYP2A13 protein expression in the epithelial cells of human bronchus and trachea, but a rare distribution in the alveolar cells. There was little expression of CYP2A13 protein in different types of lung cancers. In consideration of the high efficiency of CYP2A13 in NNK metabolic activation, our result is consistent with the reported observations that most smoking-related human lung cancers are bronchogenic and supports that CYP2A13-catalyzed in situ activation may play a critical role in human lung carcinogenesis related to NNK and AFB1 exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.106.011049DOI Listing

Publication Analysis

Top Keywords

cyp2a13 protein
16
lung cancers
12
expressed human
12
cyp2a13
11
human
9
human respiratory
8
respiratory tissues
8
peptide-specific antibody
8
antibody human
8
cytochrome p450
8

Similar Publications

Article Synopsis
  • Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease linked to abnormal tau protein accumulation, and previous studies were limited in exploring rare genetic variants due to the use of genotype arrays.* -
  • In this study, whole genome sequencing (WGS) on a large cohort allowed researchers to confirm known genetic loci related to PSP and discover new associations, particularly highlighting a different role for the APOE ε2 allele compared to Alzheimer's disease.* -
  • The findings expand knowledge of PSP's genetic underpinnings and identify potential targets for future research into the disease's mechanisms and treatments.*
View Article and Find Full Text PDF

The prevalence of fragrances in various hygiene products contributes to their sensorial allure. However, fragrances can induce sensitization in the skin or respiratory system, and the mechanisms involved in this process are incompletely understood. This study investigated the intricate mechanisms underlying the fragrance's effects on sensitization response, focusing on the interplay between CYP450 enzymes, a class of drug-metabolizing enzymes, and the adaptive immune system.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on CYP2A13, a monooxygenase enzyme involved in breaking down nicotine and other compounds, which has genetic variants that reduce its activity.
  • Researchers used molecular dynamics simulations to analyze the three-dimensional structures of CYP2A13 variants compared to the normal form (wild type) over 1000 ns.
  • Results showed that certain variants altered interactions with heme and affected the enzyme's structure, leading to decreased enzymatic activity, providing insights into the molecular reasons behind this reduction.
View Article and Find Full Text PDF
Article Synopsis
  • Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease linked to tau protein accumulation, and previous studies using genotype arrays overlooked important genetic variations like rare variants and structural changes.* -
  • This study utilized whole genome sequencing (WGS) involving 1,718 PSP patients and 2,944 controls, confirming known genetic markers and discovering new associations, including the unique role of the ε2 allele as a risk factor.* -
  • The findings from this research advance the understanding of PSP genetics, highlighting potential new targets for disease mechanisms and treatment strategies.*
View Article and Find Full Text PDF

Luteolin Alleviates Oxidative Stress in Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke via Modulation of the TRPV1 and CYP2A13/NRF2 Signaling Pathways.

Int J Mol Sci

December 2023

Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.

The current study aims to investigate the therapeutic potential of luteolin (Lut), a naturally occurring flavonoid found in various medicinal plants, for treating chronic obstructive pulmonary disease (COPD) through both in vitro and in vivo studies. The results demonstrated that Lut increased body weight, reduced lung tissue swelling and lung damage indices, mitigated systemic oxidative stress levels, and decreased alveolar fusion in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD mice. Additionally, Lut was observed to downregulate the expression of the TRPV1 and CYP2A13 proteins while upregulating SIRT6 and NRF2 protein expression in CS + LPS-induced COPD mice and cigarette smoke extract (CSE)-treated A549 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!