Using the short-lived radiotracer 42K+, we present a comprehensive subcellular flux analysis of low-affinity K+ transport in plants. We overturn the paradigm of cytosolic K+ pool-size homeostasis and demonstrate that low-affinity K+ transport is characterized by futile cycling of K+ at the plasma membrane. Using two methods of compartmental analysis in intact seedlings of barley (Hordeum vulgare L. cv Klondike), we present data for steady-state unidirectional influx, efflux, net flux, cytosolic pool size, and exchange kinetics, and show that, with increasing external [K+] ([K+]ext), both influx and efflux increase dramatically, and that the ratio of efflux to influx exceeds 70% at [K+]ext > or = 20 mm. Increasing [K+]ext, furthermore, leads to a shortening of the half-time for cytosolic K+ exchange, to values 2 to 3 times lower than are characteristic of high-affinity transport. Cytosolic K+ concentrations are shown to vary between 40 and 200 mm, depending on [K+]ext, on nitrogen treatment (NO3- or NH4+), and on the dominant mode of transport (high- or low-affinity transport), illustrating the dynamic nature of the cytosolic K+ pool, rather than its homeostatic maintenance. Based on measurements of trans-plasma membrane electrical potential, estimates of cytosolic K+ pool size, and the magnitude of unidirectional K+ fluxes, we describe efflux as the most energetically demanding of the cellular K+ fluxes that constitute low-affinity transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1533945 | PMC |
http://dx.doi.org/10.1104/pp.106.082701 | DOI Listing |
Physiol Plant
January 2025
College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China.
Nitrogen (N) is a crucial macronutrient for plant growth, with nitrate as a primary inorganic N source for most plants. Beyond its role as a nutrient, nitrate also functions as a signalling molecule, influencing plant morphogenetic development. While nitrate utilization and signalling mechanisms have been extensively studied in model plants, the origin, evolution, and diversification of core components in nitrate uptake, assimilation, and signalling remain largely unexplored.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.
View Article and Find Full Text PDFEnviron Res
January 2025
Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain; Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC/ Universidad de Vigo, Unidad asociada al CSIC, Spain.
The overuse of pesticides in agriculture has led to widespread pollution of soils and water resources, becoming a problem of great concern. Nowadays, special attention is given to neonicotinoids, particularly acetamiprid, the only neonicotinoid insecticide allowed for outdoor use in the European Union. Once acetamiprid reaches the soil, adsorption/desorption is the main process determining its bioavailability and environmental fate.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia.
Small molecule inhibitors of the sodium channel are common pharmacological agents used to treat a variety of cardiac and nervous system pathologies. They act on the channel via binding within the pore to directly block the sodium conduction pathway and/or modulate the channel to favor a non-conductive state. Despite their abundant clinical use, we lack specific knowledge of their protein-drug interactions and the subtle variations between different compound structures.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
Thermophilic microbial communities growing in low-oxygen environments often contain early-evolved archaea and bacteria, which hold clues regarding mechanisms of cellular respiration relevant to early life. Here, we conducted replicate metagenomic, metatranscriptomic, microscopic, and geochemical analyses on two hyperthermophilic (82-84 °C) filamentous microbial communities (Conch and Octopus Springs, Yellowstone National Park, WY) to understand the role of oxygen, sulfur, and arsenic in energy conservation and community composition. We report that hyperthermophiles within the Aquificota (Thermocrinis), Pyropristinus (Caldipriscus), and Thermoproteota (Pyrobaculum) are abundant in both communities; however, higher oxygen results in a greater diversity of aerobic heterotrophs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!