Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Local chromatin compaction undergoes dynamic perturbations to regulate genetic processes. To address this, the direct measurement of the fluidity of chromatin structure is carried out in single live cells using steady-state anisotropy imaging and polarization modulation microscopy. Fluorescently tagged core and linker histones are used to probe different structural aspects of chromatin compaction. A graded spatial heterogeneity in compaction is observed for the chromatin besides the distinct positional ordering of core and linker histones. These spatio-temporal features are maintained by active processes and perturbed during death. With cell cycle, the distribution in compaction heterogeneity continually changes maximizing during M-G1 transition where it displays bimodal behavior. Such measurements of spatio-temporal chromatin fluidity could have broader implications in understanding chromatin remodeling within living cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557579 | PMC |
http://dx.doi.org/10.1529/biophysj.105.079525 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!