Although the role of mitochondrial ATP-sensitive potassium (mitoKATP) channels in cardioprotection is widely accepted, it remains unclear when their opening is critical for protection. We tested the hypothesis that the mitoKATP channel acts as a trigger or mediator of protection against apoptosis through loss of mitochondrial inner membrane potential (DeltaPsim). Exposure of neonatal rat cardiomyocytes to H2O2 (0.5 mmol/L) resulted in apoptosis associated with severe DeltaPsim loss. Pretreatment with diazoxide (20 to 100 micromol/L) prevented H2O2-induced apoptosis and DeltaPsim loss at 2 but not 18 h after exposure, while the latter was prevented by cotreatment with diazoxide. Lack of protection by pretreatment with diazoxide was observed in cardiomyocytes cultured in a medium containing H2O2 for 2 h and then not containing for 16 h. The slopes of the regression lines of the relationship between the proportion of apoptotic cells and DeltaPsim loss (y = -0.89 vs. -0.42) and the proportion of cells with high side scatter signal differed between cardiomyocytes exposed H2O2 for 2 and 18 h. Diazoxide per se caused a transient DeltaPsim loss (within 30 min) with a recovery followed by persistent DeltaPsim loss (after 6 h). Inhibition of the former by 5-hydroxydecanoate (5-HD, 0.5 mmol/L) abolished protection of pretreatment with diazoxide (trigger phase), while that of the latter prevented the protection of cotreatment with diazoxide (mediator phase). Our results suggest that mitoKATP channels act as a trigger and mediator of cardioprotection through a transient or persistent DeltaPsim loss depending on phenotypic consequence in response to oxidants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2006.06.012DOI Listing

Publication Analysis

Top Keywords

deltapsim loss
28
pretreatment diazoxide
12
deltapsim
8
loss
8
loss depending
8
mitokatp channels
8
trigger mediator
8
cotreatment diazoxide
8
protection pretreatment
8
persistent deltapsim
8

Similar Publications

[FER-1 inhibits methylglyoxal-induced ferroptosis in mouse alveolar macrophages ].

Nan Fang Yi Ke Da Xue Xue Bao

December 2024

Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, China.

Objectives: To investigate the inhibitory effect of FER-1 on methylglyoxal-induced ferroptosis in cultured mouse alveolar macrophages.

Methods: MH-S cells derived from mouse alveolar macrophages treated with 90 μg/mL methylglyoxal, 10 μmol/mL FER-1MG+FER-1, or both were examined for intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and ferrous ion (Fe) levels and changes in mitochondrial membrane potential. Western blotting was performed to detect the protein expression levels of glutathione peroxidase 4 (GPX4) and long-chain acyl-CoA synthase 4 (ACSL4).

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the main chronic liver diseases. However, the roles of mitochondrial carnitine palmitoyl transferase-II (CPT-II) downregulation and liver cancer stem cell (LCSC) activation remain to be identified.

Aim: To investigate the dynamic alterations in CPT-II inactivity and LCSC activation during the malignant progression of MAFLD.

View Article and Find Full Text PDF

Mitochondrial dysfunction and α-synuclein (αSyn) aggregation are key contributors to Parkinson's Disease (PD). While genetic and environmental risk factors, including mutations in mitochondrial-associated genes, are implicated in PD, the precise mechanisms linking mitochondrial defects to αSyn pathology remain incompletely understood, hindering the development of effective therapeutic interventions. Here, we identify the loss of branched chain ketoacid dehydrogenase kinase (BCKDK) as a mitochondrial risk factor that exacerbates αSyn pathology by disrupting Complex I function.

View Article and Find Full Text PDF

Inhibition of the mitochondrial permeability transition pore as a promising target for protecting auditory function in cisplatin-induced hearing loss.

Biomed Pharmacother

December 2024

Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea. Electronic address:

mPTP is a multi-protein complex that opens in mitochondria during cell death. Cisplatin-induced hearing loss is also known to be caused by mPTP opening. Thus, our study evaluated the protective effect of a novel mPTP inhibitor named DBP-iPT against cisplatin-induced hearing loss.

View Article and Find Full Text PDF

An artesunate-modified half-sandwich iridium(iii) complex inhibits colon cancer cell proliferation and metastasis through the STAT3 pathway.

RSC Chem Biol

December 2024

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials/Nanjing Drum Tower Hospital, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China

Colon cancer is one of the most commonly diagnosed cancers and is recognized as the most aggressive tumor of the digestive system. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is associated with proliferation, metastasis and immunosuppression of the tumor cells. Here, to inhibit the STAT3 pathway and suppress metastasis in colon cancer cells, the half-sandwich iridium complex Ir-ART containing an artesunate-derived ligand was synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!