Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vitamin D(3) deficiency enhances cardiac contraction in experimental studies, yet paradoxically this deficiency is linked to congestive heart failure in humans. Activated vitamin D(3) (1alpha,25-dihydroxyvitamin D(3)) or calcitriol, decreases peak force and activates protein kinase C (PKC) in isolated perfused hearts. However, the direct influence of this hormone on adult cardiac myocyte contractile function is not well understood. Our aim is to investigate whether 1alpha,25-dihydroxyvitamin D(3) acutely modulates contractile function via PKC activation in adult rat cardiac myocytes. Sarcomere shortening and re-lengthening were measured in electrically stimulated myocytes isolated from adult rat hearts, and the vitamin D(3) response (10(-10) to 10(-7) M) was compared to shortening observed under basal conditions. Maximum changes in sarcomere shortening and relaxation were observed with 10(-9) M 1alpha,25-dihydroxyvitamin D(3). This dose decreased peak shortening, and accelerated contraction and relaxation rates within 5 min of administration, and changes in the Ca(2+) transient contributed to the peak shortening and relaxation effects. The PKC inhibitor, bis-indolylmaleimide (500 nM) largely blocked the acute influence of the most potent dose (10(-9) M) on contractile function. While peak shortening and shortening rate returned to baseline within 30 min, there was a sustained acceleration of relaxation that continued over 60 min. Phosphorylation of the Ca(2+) regulatory proteins, phospholamban, and cardiac troponin I correlated with the accelerated relaxation observed in response to acute application of 1alpha,25-dihydroxyvitamin D(3). Accelerated relaxation continued to be observed after chronic addition of 1alpha,25-dihydroxyvitamin D(3) (e.g. 2 days), yet this sustained increase in relaxation was not associated with increased phosphorylation of phospholamban or troponin I. These results provide evidence that 1alpha,25-dihydroxyvitamin D(3) directly modulates adult myocyte contractile function, and protein kinase C plays an important signaling role in the acute response. Phosphorylation of key Ca(2+) regulatory proteins by this kinase contributes to the enhanced relaxation observed in response to acute, but not chronic calcitriol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2006.05.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!