A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoscale electrostatic actuators in liquid electrolytes. | LitMetric

Nanoscale electrostatic actuators in liquid electrolytes.

J Colloid Interface Sci

Department of Aerospace Engineering, Texas A and M University, College Station, TX 77843-3141, USA.

Published: September 2006

Equilibrium and energy analyses were performed for an electrostatic actuator consisting of two plane parallel electrodes, operated using DC voltages, separated by a liquid electrolyte. One electrode is fixed, and the other electrode is connected to a spring and is free to move. The mechanical equilibrium includes the spring force, the van der Waals force, and the electrochemical force as given by the solution of the linearized Poisson-Boltzmann equation. The electrode separation is determined as a function of the applied potential, the natural (i.e., zeta) potential, the Debeye length, the initial electrode separation, the spring constant, and the Hamaker constant. The actuator exhibits the classical "pull-in" instability. The natural potential increases the critical applied potential but does not significantly affect the critical separation. For zero natural potential, the spring constant does not affect the critical separation. Ratios of the maximum spring energy, the maximum van der Waals energy, and the maximum electrochemical energy were plotted as functions of the Hamaker constant and the initial electrode separation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2006.05.053DOI Listing

Publication Analysis

Top Keywords

electrode separation
12
van der
8
der waals
8
applied potential
8
initial electrode
8
spring constant
8
hamaker constant
8
natural potential
8
affect critical
8
critical separation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!