Highwire restrains synaptic growth by attenuating a MAP kinase signal.

Neuron

Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Washington University, St. Louis, Missouri 63110, USA.

Published: July 2006

Highwire is an extremely large, evolutionarily conserved E3 ubiquitin ligase that negatively regulates synaptic growth at the Drosophila NMJ. Highwire has been proposed to restrain synaptic growth by downregulating a synaptogenic signal. Here we identify such a downstream signaling pathway. A screen for suppressors of the highwire synaptic overgrowth phenotype yielded mutations in wallenda, a MAP kinase kinase kinase (MAPKKK) homologous to vertebrate DLK and LZK. wallenda is both necessary for highwire synaptic overgrowth and sufficient to promote synaptic overgrowth, and synaptic levels of Wallenda protein are controlled by Highwire and ubiquitin hydrolases. highwire synaptic overgrowth requires the MAP kinase JNK and the transcription factor Fos. These results suggest that Highwire controls structural plasticity of the synapse by regulating gene expression through a MAP kinase signaling pathway. In addition to controlling synaptic growth, Highwire promotes synaptic function through a separate pathway that does not require wallenda.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2006.05.026DOI Listing

Publication Analysis

Top Keywords

synaptic growth
16
map kinase
16
synaptic overgrowth
16
highwire synaptic
12
synaptic
10
highwire
9
signaling pathway
8
kinase kinase
8
kinase
6
highwire restrains
4

Similar Publications

A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Background: Vascular dysfunction, blood-brain barrier (BBB) dysregulation, and neuroinflammation are thought to participate in Alzheimer`s disease (AD) pathogenesis, though the mechanism is poorly understood. Among pathways of interest, AD pathology appears to affect vascular endothelial growth factor-A (VEGFA) signaling in a bidirectional manner. Higher VEGF levels are thought to have a protective role and slow cognitive decline.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.

Background: Synaptic plasticity impairment plays a critical role in the pathogenesis of Alzheimer's disease (AD), Smad4, a central intracellular signal transmission mediator of transmission of transforming growth factor-β (TGF-β) signaling, plays a pivotal role in many biological processes, including cell differentiation, migration, apoptosis and tumorigenesis. Emerging evidence has demonstrated that Smad4 is also involved in the pathogenesis of AD. Once TGF-β signaling is stimulated, Smad4 interaction with Sp1 and Smad3 induces the transcriptional activation of APP.

View Article and Find Full Text PDF

Background: Genetic variations have emerged as crucial players in the etiology of Alzheimer's disease (AD), and they serve for a better understanding of the disease mechanisms; yet the specific roles of these genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Therefore, we generated zebrafish models for AD variants to analyze the in depth molecular and biological functions of these variants.

View Article and Find Full Text PDF

Background: Epileptic activity is increasingly recognized as a contributor to Alzheimer's Disease (AD) pathology. In AD models, endogenous tau contributes to epileptic activity and associated cognitive deficits through mechanisms that are not fully understood. Increased attention is being directed towards tau's interactions with proteins that regulate neuronal activity, particularly tau's proline rich domain and its binding to SH3-containing proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!