Opiate activation of mu-opioid receptors (muORs) in the ventral tegmental area (VTA) modulates gamma-aminobutyric acid (GABA) neurotransmission within the mesocorticolimbic dopamine (DA) reward system. We combined in vivo extracellular electrophysiological recordings in anesthetized and freely behaving rats with intracellular Neurobiotin filling and immunocytochemistry to characterize the effects of opiates on VTA GABA neurons, evaluate their discharge activity during opiate self-administration, and identify the cellular sites for opiate activation. We identified a subpopulation of VTA GABA neurons that was characterized by location, spike discharge profile, activation by microelectrophoretic DA, and response to internal capsule (IC) stimulation. Systemic administration of heroin or microelectrophoretic application of the selective muOR agonist [d-Ala2, N-Me-Phe4, Gly-ol]-Enkephalin (DAMGO) reduced VTA GABA neuron firing rate (heroin IC(50) = 0.35 mg/kg) and was blocked by the muOR antagonist naloxone. Heroin also reduced IC-evoked post-stimulus spike discharges, a manifestation of gap-junction-mediated electrical coupling between VTA GABA neurons. The baseline firing rate of VTA GABA neurons significantly increased (239%) following the acquisition of heroin self-administration behavior and transiently increased during each response for heroin (105%), but decreased (49%) following heroin, similar to non-contingent heroin. Electrophysiologically characterized VTA GABA neurons were filled with Neurobiotin and labeled dendrites contained plasmalemmal muOR immunoreactivity. Dually labeled muOR dendrites contained dendrodendritic appositions characteristic of gap junctions. These findings indicate that inhibition of this population of GABAergic neurons by opiates acting on dendritic muORs has implications for modulation of electrical coupling between VTA GABA neurons and dopamine (DA) neurotransmission in the VTA and terminal field regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2006.05.023 | DOI Listing |
Eur J Neurosci
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFJ Neurosci
January 2025
Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
The human hippocampus, essential for learning and memory, is implicated in numerous neurological and psychiatric disorders, each linked to specific neuronal subpopulations. Advancing our understanding of hippocampal function requires computational models grounded in precise quantitative neuronal data. While extensive data exist on the neuronal composition and synaptic architecture of the rodent hippocampus, analogous quantitative data for the human hippocampus remain very limited.
View Article and Find Full Text PDFeNeuro
January 2025
Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN.
Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or "hedonic" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA. Electronic address:
Prenatal stress is a risk factor for neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). However, how early stress modification of brain development contributes to this pathophysiology is poorly understood. Ventral forebrain regions such as dorsal striatum are of particular interest: dorsal striatum modulates movement and cognition, is altered in NDDs, and has a primarily GABAergic population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!