Insulin resistance is associated with impaired skeletal muscle oxidation capacity and reduced mitochondrial number and function. Here, we report that adiponectin signaling regulates mitochondrial bioenergetics in skeletal muscle. Individuals with a family history of type 2 diabetes display skeletal muscle insulin resistance and mitochondrial dysfunction; adiponectin levels strongly correlate with mtDNA content. Knockout of the adiponectin gene in mice is associated with insulin resistance and low mitochondrial content and reduced mitochondrial enzyme activity in skeletal muscle. Adiponectin treatment of human myotubes in primary culture induces mitochondrial biogenesis, palmitate oxidation, and citrate synthase activity, and reduces the production of reactive oxygen species. The inhibition of adiponectin receptor expression by siRNA, or of AMPK by a pharmacological agent, blunts adiponectin induction of mitochondrial function. Our findings define a skeletal muscle pathway by which adiponectin increases mitochondrial number and function and exerts antidiabetic effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671025PMC
http://dx.doi.org/10.1016/j.cmet.2006.05.002DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
24
insulin resistance
12
mitochondrial
8
reduced mitochondrial
8
mitochondrial number
8
number function
8
adiponectin
7
skeletal
6
muscle
6
role adiponectin
4

Similar Publications

Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.

View Article and Find Full Text PDF

Long-term blood glucose control via glucose-activated transcriptional regulation of insulin analogue in type 1 diabetes mice.

Diabetes Obes Metab

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.

Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Titin fragment is a sensitive biomarker in Duchenne muscular dystrophy model mice carrying full-length human dystrophin gene on human artificial chromosome.

Sci Rep

January 2025

Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention.

View Article and Find Full Text PDF

This study presents TOM500, a comprehensive multi-organ annotated orbital magnetic resonance imaging (MRI) dataset. It includes clinical data, T2-weighted MRI scans, and corresponding segmentations from 500 patients with thyroid eye disease (TED) during their initial visit. TED is a common autoimmune disorder with distinct orbital MRI features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!