We show that the two-dimensional one pulse (TOP) representation of magic-angle spinning nuclear magnetic resonance data of half-integer quadrupolar nuclei has significant advantages over the conventional one-dimensional spectrum. The TOP spectrum, which correlates NMR frequency to spinning sideband order, provides a rapid determination of the number of sites as well as the size of the their quadrupolar coupling. Additionally, synchronous acquisition spectra of the central and satellite transition resonances can be separated by different projections of the TOP spectrum, with higher resolution spectra often found in the satellite transitions projection. A previously perceived problem of centerband aliasing in TOP can be eliminated with an algorithm that uses larger subspectral widths and the sideband order dimension to distinguish centerbands from sidebands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2006.05.007DOI Listing

Publication Analysis

Top Keywords

two-dimensional pulse
8
half-integer quadrupolar
8
quadrupolar nuclei
8
top spectrum
8
sideband order
8
pulse mas
4
mas half-integer
4
nuclei two-dimensional
4
top
4
pulse top
4

Similar Publications

Prediction of pre-eclampsia using maternal hemodynamic parameters at 12 + 0 to 15 + 6 weeks.

Ultrasound Obstet Gynecol

January 2025

Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.

Objectives: To compare the maternal hemodynamic profile at 12 + 0 to 15 + 6 weeks' gestation in women who subsequently developed pre-eclampsia (PE) and those who did not, and to assess the screening performance of maternal hemodynamic parameters for PE in combination with the Fetal Medicine Foundation (FMF) triple test, including maternal factors (MF), mean arterial pressure (MAP), uterine artery pulsatility index and placental growth factor.

Methods: This was a prospective case-control study involving Chinese women with a singleton pregnancy who underwent preterm PE screening at 11 + 0 to 13 + 6 weeks' gestation using the FMF triple test, between February 2020 and February 2023. Women identified as being at high risk (≥ 1:100) for preterm PE by the FMF triple test were matched 1:1 with women identified as low risk (< 1:100) for maternal age ± 3 years, maternal weight ± 5 kg and date of screening ± 14 days.

View Article and Find Full Text PDF

Direct Observation of Dipole Interlocking Effect Occurrence in Two-Dimensional Ferroelectricity.

Nano Lett

January 2025

School of Materials and Energy or Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, P. R. China.

The electric dipole in materials is closely associated with their electronic transport, optical properties, and mechanical behavior. Here, we have employed the differential phase contrast (DPC) technique of the scanning transmission electron microscopy technique (STEM) to directly analyze the local electric dipole at the sub-Angstrom scale. By utilizing DPC-STEM technology, we successfully visualized the ferroelectric polarization of van der Waals material 3R α-InSe and directly confirmed the dipole interlocking effect (DIE) between in-plane (IP) and out-of-plane (OOP) polarizations.

View Article and Find Full Text PDF

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

In-Plane Polarization-Triggered WS-Ferroelectric Heterostructured Synaptic Devices.

ACS Appl Mater Interfaces

January 2025

School of Information Science and Technology, Fudan University, Shanghai 200433, China.

To date, various kinds of memristors have been proposed as artificial neurons and synapses for neuromorphic computing to overcome the so-called von Neumann bottleneck in conventional computing architectures. However, related working principles are mostly ascribed to randomly distributed conductive filaments or traps, which usually lead to high stochasticity and poor uniformity. In this work, a heterostructure with a two-dimensional WS monolayer and a ferroelectric PZT film were demonstrated for memristors and artificial synapses, triggered by in-plane ferroelectric polarization.

View Article and Find Full Text PDF

Ultrafast Laser-Induced Spin Dynamics in All-Semiconductor Ferromagnetic CrSBr-Phosphorene Heterostructures.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China.

Ultrashort laser pulses are extensively used for efficient manipulation of interfacial spin injection in two-dimensional van der Waals (vdW) heterostructures. However, physical processes accompanying the photoinduced spin transfer dynamics on the all-semiconductor ferromagnetic vdW heterostructure remain largely unexplored. Here, we present a computational investigation of the femtosecond laser pulse induced purely electron-mediated spin transfer dynamics at a time scale of less than 50 fs in a vdW heterostructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!