The integrated chemical-biological degradation combining advanced oxidation by UV/H(2)O(2) followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mgH(2)O(2)/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2006.05.054DOI Listing

Publication Analysis

Top Keywords

response surface
12
integrated chemical-biological
8
chemical-biological degradation
8
reactive azo
8
surface method
8
optimization integrated
4
degradation reactive
4
azo dye
4
dye response
4
surface methodology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!