Association between UHMWPE particle-induced inflammatory osteoclastogenesis and expression of RANKL, VEGF, and Flt-1 in vivo.

Biomaterials

Department of Orthopedic Surgery, Wayne State University School of Medicine, University Health Center 7C, 4201 St. Antoine Blvd., Detroit, MI 48201, USA.

Published: October 2006

Wear debris-induced vascularized granulomatous periprosthetic tissue may augment the progress of prosthetic loosening, a major clinical problem after total joint replacement. The purpose of this study is to investigate the association of ultra-high-molecular-weight polyethylene (UHMWPE) particle-induced inflammatory osteoclastogenesis and expression of RANK/RANKL and VEGF/VEGF receptors (Flt-1 and Flk-1) using a mouse osteolysis model. UHMWPE particles were introduced into established air pouches on BALB/c mice, followed by implantation of calvaria bone from syngeneic littermates. Mice were injected with either recombinant VEGF or VEGF inhibitor (VEGF R2/F(c) Chimera). Mice without drug treatment, as well as mice injected with saline alone were included. Each group contains 10 mice. Pouch tissues were harvested 2 weeks after bone implantation for histological and molecular analysis. UHMWPE stimulation significantly increased VEGF gene expression, and exerted a lower enhancement effect on the gene expression of Flt-1 and Flk-1. UHMWPE-stimulated VEGF production was markedly reduced by VEGF inhibitor treatment. Immunofluorescent staining indicated that pouch tissue macrophages were the main source of both VEGF and Flt-1 production. A positive association was observed between tissue inflammation and the levels of VEGF and Flt-1 gene transcripts. Both RANK and RANKL gene transcripts were significantly increased by UHMWPE stimulation, which was subsequently reduced by VEGF inhibitor treatment (p<0.05). VEGF treatment increased TRAP(+) cells in pouches either with or without UHMWPE particle stimulation, and VEGF inhibitor treatment caused a significant reduction in the number of TRAP(+) cells in UHMWPE-containing pouches. This study suggests that VEGF has a role in the regulation of RANK/RANKL-mediated osteoclastogenesis, and warrant future investigations to elucidate the role of VEGF signaling in the pathogenesis of prosthetic loosening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.04.004DOI Listing

Publication Analysis

Top Keywords

vegf flt-1
12
vegf inhibitor
12
vegf
10
uhmwpe particle-induced
8
particle-induced inflammatory
8
inflammatory osteoclastogenesis
8
osteoclastogenesis expression
8
flt-1 flk-1
8
mice injected
8
uhmwpe stimulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!