cIAP2 (cellular inhibitor of apoptosis protein 2) is induced by NF-kappaB (nuclear factor kappaB) when cells need to respond quickly to different apoptotic stimuli. A recent study using cDNA microarray technology has suggested that cIAP2 transcription is regulated in a cell cycle-dependent manner, although the mechanism for such regulation is unknown. In this study, we confirmed the cell cycle-dependent regulation of cIAP2 expression at both the mRNA and protein levels. Additionally, we found that a bipartite CDE (cell cycle-dependent element)/CHR (cell cycle gene homology region) element in the cIAP2 promoter mediates cIAP2 gene activation in G2/M phase. Cell cycle-dependent G2/M-phase-specific cIAP2 expression is enhanced by NF-kappaB activation, and selective down-regulation of cIAP2 causes cells blocked in mitosis with nocodazole to become susceptible to apoptosis, indicating that the G2/M-phase-specific expression of cIAP2 contributes to the survival of mitotically arrested cells. Our studies describing the NF-kappaB-independent G2/M-phase-specific expression of cIAP2 will help in further understanding the molecular basis of cIAP2 over-expression in a variety of human cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1609902 | PMC |
http://dx.doi.org/10.1042/BJ20060612 | DOI Listing |
Sci Rep
January 2025
Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
Cell cycle-dependent gene expression analysis is particularly important as numerous genes show tightly regulated expression patterns at different phases of the cell cycle. For cancer cells, analysis of cell cycle-related events is of paramount significance since tumorigenesis is characteristically coupled to cell cycle perturbations. RT-qPCR is a highly sensitive technique to investigate cell cycle-dependent transcriptional regulation.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Research Informatics, The University of Chicago, Chicago, IL, USA.
The fallopian tube undergoes extensive molecular changes during the menstrual cycle and menopause. We use single-cell RNA and ATAC sequencing to construct a comprehensive cell atlas of healthy human fallopian tubes during the menstrual cycle and menopause. Our scRNA-seq comparison of 85,107 pre- and 46,111 post-menopausal fallopian tube cells reveals substantial shifts in cell type frequencies, gene expression, transcription factor activity, and cell-to-cell communications during menopause and menstrual cycle.
View Article and Find Full Text PDFSci Adv
January 2025
Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA.
Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.
View Article and Find Full Text PDFFEBS Lett
December 2024
Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
CRISPR-Cas9 is a widely used genome-editing tool. We previously developed a method with improved homology-directed repair efficiency and reduced off-target effects by utilizing a fusion protein of AcrIIA4, a Cas9 inhibitor, and Cdt1, which accumulates in the G1 phase and activates Cas9 only in the S/G2 phase. However, it is unknown whether Cas9 inhibition by AcrIIA4 + Cdt1 occurs repeatedly in the G1 phase as the cell cycle progresses.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
Diabetic kidney disease (DKD), a.k.a diabetic nephropathy, is a leading cause of end-stage renal disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!