Unlabelled: In vitro, mesenchymal stem cells differentiate to osteoblasts when exposed to bone-inducing medium. However, adipocytes are also formed. We showed that activation of the nuclear protein deacetylase Sirt1 reduces adipocyte formation and promotes osteoblast differentiation.
Introduction: Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, adipocytes, chondrocytes, and myoblasts. It has been suggested that a reciprocal relationship exists between the differentiation of MSCs into osteoblasts and adipocytes. Peroxisome proliferator-activated receptor gamma2 (PPARgamma2) is a key element for the differentiation into adipocytes. Activation of Sirt1 has recently been shown to decrease adipocyte development from preadipocytes through inhibition of PPARgamma2.
Materials And Methods: We used the mouse mesenchymal cell line C3H10T1/2 and primary rat bone marrow cells cultured in osteoblast differentiation medium with or without reagents affecting Sirt1 activity. Adipocyte levels were analyzed by light microscopy and flow cytometry (FACS) after staining with Oil red O and Nile red, respectively. Osteoblast and adipocyte markers were studied with quantitative real-time PCR. Mineralization in cultures of primary rat bone marrow stromal cells was studied by von Kossa and alizarin red staining.
Results: We found that Sirt1 is expressed in the mesenchymal cell line C3H10T1/2. Treatment with the plant polyphenol resveratrol as well as isonicotinamide, both of which activate Sirt1, blocked adipocyte development and increased the expression of osteoblast markers. Nicotinamide, which inhibits Sirt1, increased adipocyte number and increased expression of adipocyte markers. Furthermore, activation of Sirt1 prevented the increase in adipocytes caused by the PPARgamma-agonist troglitazone. Finally, activation of Sirt1 in rat primary bone marrow stromal cells increased expression of osteoblast markers and also mineralization.
Conclusions: In this study, we targeted Sirt1 to control adipocyte development during differentiation of MSCs into osteoblasts. The finding that resveratrol and isonicotinamide markedly inhibited adipocyte and promoted osteoblast differentiation may be relevant in the search for new treatment regimens of osteoporosis but also important for the evolving field of cell-based tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/jbmr.060415 | DOI Listing |
Nutrients
December 2024
Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea.
Background/objectives: Type 2 diabetes mellitus (T2DM) is considered a serious risk to public health since its prevalence is rapidly increasing worldwide despite numerous therapeutics. Insulin resistance in T2DM contributes to chronic inflammation and other metabolic abnormalities that generate fat accumulation in the liver, eventually leading to the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Recently, the possibility that microbial-derived metabolites may alleviate MAFLD through enterohepatic circulation has emerged, but the underlying mechanism remains unclear.
View Article and Find Full Text PDFFoods
December 2024
College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
Raisins are an important source of polyphenolic compounds in plant foods, and polyphenols are associated with antioxidant and anti-aging activity. In this work, 628 polyphenols in raisin extracts were characterized using UPLC-MS/MS, mainly including tricetin 3'-glucuronide, diisobutyl phthalate, butyl isobutyl phthalate, isoquercitrin and 6-hydroxykaempferol-7-O-glucoside. The oxidative stress in HO-induced HepG2 cells and D-gal-induced aging mice was alleviated by raisin polyphenols (RPs) via increases in the cellular levels of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), along with decreases in malonaldehyde (MDA), reactive oxygen species (ROS) and advanced glycosylation end-products (AGEs) levels.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China.
Stroke is the leading cause of death and disability worldwide, with ischemic stroke accounting for the majority of these. HBA is the active ingredient in and has potential therapeutic effects on central nervous system diseases. In this study, the cell model of cerebral ischemia was replicated by the culture method of oxygen-glucose deprivation/reoxygenation, and the rat model of vascular dementia was established by the two-vessel occlusion method.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context.
View Article and Find Full Text PDFJ Hum Hypertens
January 2025
Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, China.
Previous studies suggest that ferroptosis is involved in cardiovascular diseases. The aim of the present study is to investigate the causal relationship between angiotensin II type 1 and type 2 receptors (ATR) activities and mitochondrial dysfunction in induction of cardiomyocyte ferroptosis. Human AC16 cardiomyocytes were first pre-treated with an ATR blockers, before stimulated with angiotensin II (Ang II) for 24 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!