The structures of aquo complexes of the curium(III) ion have been systematically studied using quantum chemical and molecular dynamics (MD) methods. The first hydration shell of the Cm3+ ion has been calculated using density functional theory (DFT), with and without inclusion of the conductor-like polarizable continuum medium (CPCM) model of solvation. The calculated results indicate that the primary hydration number of Cm3+ is nine, with a Cm-O bond distance of 2.47-2.48 A. The calculated bond distances and the hydration number are in excellent agreement with available experimental data. The inclusion of a complete second hydration shell of Cm3+ has been investigated using both DFT and MD methods. The presence of the second hydration shell has significant effects on the primary coordination sphere, suggesting that the explicit inclusion of second-shell effects is important for understanding the nature of the first shell. The calculated results indicate that 21 water molecules can be coordinated in the second hydration shell of the Cm3+ ion. MD simulations within the hydrated-ion model suggest that the second-shell water molecules exchange with the bulk solvent with a lifetime of 161 ps.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0513787DOI Listing

Publication Analysis

Top Keywords

hydration shell
16
shell cm3+
12
second hydration
12
curiumiii ion
8
molecular dynamics
8
cm3+ ion
8
calculated indicate
8
hydration number
8
water molecules
8
hydration
6

Similar Publications

Adsorption of Eu and Gd on high-charge micas as inner-sphere complexes.

J Colloid Interface Sci

January 2025

Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:

High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.

View Article and Find Full Text PDF

FAP-targeting biomimetic nanosystem to restore the activated cancer-associated fibroblasts to quiescent state for breast cancer radiotherapy.

Int J Pharm

January 2025

Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China. Electronic address:

Cancer associated fibroblasts (CAFs) are one of the most important stromal cells in the tumor microenvironment, playing a pivotal role in the development, recurrence, metastasis, and immunosuppression of cancer and treatment resistance. Here, we developed a core-shell biomimetic nanosystem termed as FAP-C NPs. This system was comprised of 4T1 extracellular vesicles fused with a FAP single-chain antibody fragment to form the biomimetic shell, and PLGA nanoparticles loaded with calcipotriol as the core.

View Article and Find Full Text PDF

Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.

View Article and Find Full Text PDF

This study provides a comprehensive analysis of the interactions between dimethyl sulfoxide (DMSO) and two small peptides, diglycine and -acetyl-glycine-methylamide (NAGMA), in aqueous solutions using FTIR spectroscopy and density functional theory (DFT) calculations. ATR-FTIR spectroscopy and DFT results revealed that DMSO does not form direct bonds with the peptides, suggesting that DMSO indirectly influences both peptides by modifying the surrounding water molecules. The analysis of HDO spectra allowed for the isolation of the contribution of water molecules that were simultaneously altered by the peptide and DMSO, and it also explained the changes in the hydration shells of the peptides in the presence of DMSO.

View Article and Find Full Text PDF

The hydration shell of a protein is so important and an integral part of it, that protein's structure, stability and functionality cannot be conceived in its absence. This layer has unique properties not found in bulk water. However, ions, always present in the protein environment, disturb the hydration shell depending on their nature and concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!