A signal followed by shock was presented at irregular intervals during a free-operant avoidance schedule. The effects of this procedure were studied in terms of the rate of unavoided shock in the presence and absence of the signal and the rate of response before and during the signal. Three shock intensities were employed. Response enhancement as well as response suppression were observed; irrespective of changes in responding, shock rates substantially increased during signalled periods compared to non-signalled periods. Shock rates in non-signalled periods were generally higher than during training.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1333879 | PMC |
http://dx.doi.org/10.1901/jeab.1971.16-275 | DOI Listing |
Am J Respir Cell Mol Biol
January 2025
The University of Texas Medical Branch at Galveston, Microbiology and Immuology, Galveston, Texas, United States.
Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.
View Article and Find Full Text PDFJ Speech Lang Hear Res
January 2025
Center for Autism Services, Science and Innovation, Kennedy Krieger Institute, Baltimore, MD.
Purpose: Despite group-level improvements in active engagement and related outcomes, significant individual variability in response to early intervention exists. The purpose of this preliminary study was to examine the effects of a group-based Naturalistic Developmental Behavioral Intervention (NDBI) on active engagement among a heterogeneous sample of young autistic children in a clinical setting.
Method: Sixty-three autistic children aged 24-60 months ( = 44.
Sci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Adv
January 2025
Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!