Background: Adeno-associated viral (AAV) vectors are potent delivery vehicles for gene transfer strategies directed at the central nervous system (CNS), muscle and liver. However, comparatively few studies have described AAV-mediated gene transfer to tumor tissues. We have previously demonstrated that while AAV2 and Adenoviral (Ad) 5 vectors have similar broad host ranges in tumor-derived cell lines, AAV2 was able to penetrate human glioblastoma biopsy spheroids and xenografts more efficiently than Ad 5 vectors. These results suggested that AAV vectors could be suitable for therapeutic gene delivery to solid tumor tissue. In the present work, the transduction efficacy of AAV serotypes 4 and 5 were compared to AAV2, both in vitro and in intracranial GBM xenografts derived from patient biopsies implanted into nude rats.
Methods: AAV vector serotypes 2, 4, and 5 containing either the green fluorescent protein (GFP) or the bacterial beta-galactosidase (lacZ) reporter gene were added to five different human glioma cell lines, to multicellular spheroids generated from glioblastoma patient biopsies, and to spheroids xenografted intracranially in nude rats. Transduction efficiency was assessed by fluorescence imaging, histochemistry, immunohistochemistry and flow cytometry.
Results: While all three AAV serotypes were able to transduce the glioma cell lines when added individually or when they were administered in concert, AAV2 transduced the glioma cells most effectively compared to AAV4 or AAV5. Upon infecting glioblastoma spheroids in vitro, all three AAV serotypes efficiently transduced cells located at the surface as well as within deeper layers of the spheroids. In addition, similarly to what was observed for AAV2 16, both AAV4 and AAV5 were able to transduce human glioblastoma xenografts implanted intracranially.
Conclusions: In addition to the widely used AAV2 serotype, AAV4 and AAV5 serotypes may also be used to transduce biologically diverse glioma cell lines. They also penetrate and transduce solid human tumor tissue derived from patient biopsies. Therefore, the data presented here provide a proof of principle for developing AAV4 and AAV5 as treatment vehicles for human malignant gliomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jgm.939 | DOI Listing |
J Chromatogr A
January 2025
Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany.
Adeno-associated viruses (AAV) are among the leading vectors for in vivo gene therapy. The purification of AAV remains a bottleneck as it typically requires multiple individual process steps, often resulting in product loss and high costs. Current downstream processes are usually serotype-specific and rely primarily on expensive affinity resins.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany. Electronic address:
Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA.
Background: Adeno-associated virus (AAV) 8 and 9 are in clinical trials for treating neuromuscular diseases such as Duchenne muscular dystrophy (DMD). Muscle consists of myofibres of different types and sizes. However, little is known about the fibre type and fibre size tropism of AAV in large mammals.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA.
Migraine patients often experience sensory symptoms called auras accompanying the headaches. Cortical spreading depression (CSD), a slow-propagating wave of neuroglial depolarization followed by hyperpolarization is proposed to be the neurological mechanism underlying these auras. We have previously found that progesterone regulates susceptibility to migraine through progesterone receptor (PR) activation.
View Article and Find Full Text PDFBiotechnol Lett
January 2025
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
Objective: Adeno-associated viruses (AAVs) are widely used as gene therapy vectors due to their safety, stability, and long-term expression characteristics. The objective of this work is to develop an aqueous two-phase system (ATPS) as a universal platform for the separation and purification of AAVs.
Results: This study utilized polyethylene glycol (PEG)/salt ATPSs to separate and purify various AAV serotypes, including AAV5, AAV8, and AAV9, which focusing on serotype-specific performance and partial empty capsid removal.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!