BRCA1 and BRCA2 mutations are responsible for most familial breast carcinomas. Recent reports carried out in non-cancerous mouse BRCA1- or BRCA2-deficient embryonic stem (ES) cells, and hamster BRCA2-deficient cells have demonstrated that the targeted inhibition of poly(ADP-ribose) polymerase (PARP-1) kills BRCA mutant cells with high specificity. Although these studies bring hope for BRCA mutation carriers, the effectiveness of PARP-1 inhibitors for breast cancer remains elusive. Here we present the first in vivo demonstration of PARP-1 activity in BRCA1-deficient mammary tumors and describe the effects of PARP-1 inhibitors (AG14361, NU1025, and 3-aminobenzamide) on BRCA1-deficient ES cells, mouse and human breast cancer cells. AG14361 was highly selective for BRCA1-/- ES cells; however, NU1025 and 3-aminobenzamide were relatively non-selective. In allografts of naïve ES BRCA1-/- cells there was either partial or complete remission of tumors. However, in allografts of mouse, BRCA1-/- mammary tumors, there was no tumor regression or remission although a partial inhibition of tumor growth was observed in both the BRCA1-/- and BRCA1+/+ allografts. In human tumor cells, PARP-1 inhibitors showed no difference in vitro in limiting the growth of mammary tumors irrespective of their BRCA1 status. These results suggest that PARP-1 inhibitors may non-specifically inhibit the growth of mammary tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1483123PMC
http://dx.doi.org/10.7150/ijbs.2.179DOI Listing

Publication Analysis

Top Keywords

parp-1 inhibitors
20
mammary tumors
16
breast cancer
12
polymerase parp-1
8
cells
8
nu1025 3-aminobenzamide
8
brca1-/- cells
8
growth mammary
8
parp-1
7
inhibitors
5

Similar Publications

Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.

View Article and Find Full Text PDF

Development of Tc-Labeled Complexes with a Niraparib HYNIC Derivative for PARP-Positive Tumor Imaging.

Mol Pharm

January 2025

Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

As an enzyme that plays an important role in DNA repair, poly(ADP-ribose) polymerase-1 (PARP-1) has become a popular target for cancer therapy. Nuclear medicine molecular imaging technology, supplemented by radiolabeled PARP-1 inhibitors, can accurately determine the expression level of PARP-1 at lesion sites to help patients choose an appropriate treatment plan. In this work, niraparib was modified with a hydrazinonicotinamide (HYNIC) group to generate the ligand NPBHYNIC, which has an affinity (IC) of 450.

View Article and Find Full Text PDF

Background: The Ets-1 transcription factor plays a primordial role in regulating the expression of numerous genes implicated in cancer progression. In a previous study, we revealed that poly(ADP-ribose) polymerase-1 (PARP-1) inhibition by PJ-34 results in Ets-1 level increase in cells, which is related with cell death of Ets-1-expressing cancer cells.

Aims: The mechanism of the antitumor effect of PARP-1 inhibition was investigated in the Ets-1-expressing MDA-MB-231 breast cancer cells.

View Article and Find Full Text PDF

Introduction: NF-κB plays a pivotal role in the progression of cancers, including myosarcomas such as fibrosarcoma. Plants possess considerable potential for the provision of chemotherapeutic effects against cancer. The present study assessed, among others, the cytotoxicity, migration capacity and DNA damage induced by several natural compounds (berberine, curcumin, biochanin A, cucurbitacin E (CurE) and phenethyl caffeic acid (CAPE)) in cancer cells (WEHI-164) and normal muscle cells (L6).

View Article and Find Full Text PDF

Oxidative Stress Biomarkers in Hypertension.

Curr Med Chem

January 2025

3rd Department of Cardiology, General Hospital of Thoracic Diseases 'Sotiria', National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.

Arterial hypertension is a silent and progressive disease with deleterious vascular implications on all target organs, including the heart, the brain, the kidneys, and the eyes. Oxidative stress, defined as the overproduction of Reactive Oxygen Species (ROS) over antioxidants, is capable of deteriorating not only the normal endothelial but also the cellular function with further cardiovascular implications. Xanthine oxidase activity, NADPH oxidase overexpression, and ROS production lead to hypertension and high arterial tone, culminating in end-organ damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!