Background And Purpose: It has been recently shown that a single session of repetitive transcranial magnetic stimulation (rTMS) of the unaffected hemisphere can improve motor function in stroke patients; however, this improvement is short-lasting. We therefore conducted a randomized, sham-controlled, phase II trial to evaluate whether five sessions of low-frequency rTMS can increase the magnitude and duration of these effects and whether this approach is safe.
Methods: Fifteen patients with chronic stroke were randomized to receive active or sham rTMS of the unaffected hemisphere. A blinded rater assessed motor function and corticospinal excitability at baseline, during and after 2 weeks of treatment. Safety was assessed using a neuropsychologic battery and electroencephalogram.
Results: Active rTMS resulted in a significant improvement of the motor function performance in the affected hand that lasted for 2 weeks. These effects were not observed in the sham rTMS group (affected and unaffected hand) and in the unaffected hand in the active rTMS group. Corticospinal excitability decreased in the stimulated, unaffected hemisphere and increased in the affected hemisphere. There was a significant correlation between motor function improvement and corticospinal excitability change in the affected hemisphere. Cognitive performance and electroencephalogram were not changed significantly throughout the trial in both groups of treatment.
Conclusions: These results support and extend the findings of previous studies on rTMS in stroke patients because five consecutive sessions of rTMS increased the magnitude and duration of the motor effects. Furthermore, this increased dose of rTMS is not associated with cognitive adverse effects and/or epileptogenic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.STR.0000231390.58967.6b | DOI Listing |
Neuropediatrics
January 2025
Neonatology, Leiden University, Leiden, Netherlands.
Background Hemimegalencephaly (HME) is a rare congenital disorder that is initiated during embryonic development with abnormal growth of one hemisphere. Tuberous sclerosis complex (TSC), a genetic disorder, is rarely associated with HME. Methods We present a case of a newborn with HME with a confirmed mutation in the TSC-1 gene and describe the clinical course, findings on (amplitude integrated) electroencephalography (aEEG), cranial ultrasound (CUS), MRI, and the postmortem evaluation.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Rehabilitation, Guizhou Medical University, Guiyang, Guizhou, China.
BACKGROUND Swallowing is a complex behavior involving the musculoskeletal system and higher-order brain functions. We investigated the effects of different modalities of repetitive transcranial magnetic stimulation (rTMS) on the unaffected hemisphere and observed correlation between suprahyoid muscle activity and cortical activation in unilateral stroke patients when swallowing saliva, based on functional near-infrared spectroscopy (fNIRS). MATERIAL AND METHODS From November 2022 to March 2023, twenty-five patients with unilateral stroke were screened using computed tomography or magnetic resonance imaging and identified via a video fluoroscopic swallow study.
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea.
Background: Brain-computer interface (BCI) technology can enhance neural plasticity and motor recovery in persons with stroke. However, the effects of BCI training with motor imagery (MI)-contingent feedback versus MI-independent feedback remain unclear. This study aimed to investigate whether the contingent connection between MI-induced brain activity and feedback influences functional and neural plasticity outcomes.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
Cortical spreading depolarization (CSD), a slowly propagating wave of transient cellular depolarization, is a reliable cortical response to various brain insults (stroke, trauma, seizures) and underlying mechanism of migraine aura. Little is known about CSD effects on brain network activity. Using undirected (mutual information, MI) and directed (transfer entropy, TE) measures, we studied the dynamics of cross-hemispheric connectivity associated with the development of unilateral CSD in freely behaving rats and the involvement of inhibitory transmission in mechanisms of the coupling changes.
View Article and Find Full Text PDFNeurophotonics
January 2025
Washington University in St. Louis, Department of Neurology, St. Louis, Missouri, United States.
Significance: Stroke is the leading cause of chronic disability in the United States. How stroke size affects post-stroke repair and recovery is poorly understood.
Aim: We aim to investigate the effects of stroke size on early repair patterns and determine how early changes in neuronal circuits and networks predict functional outcomes after stroke.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!