Physiological roles for amyloid beta peptides.

J Physiol

Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.

Published: August 2006

Alzheimer's disease is recognized post mortem by the presence of extracellular senile plaques, made primarily of aggregation of amyloid beta peptide (Abeta). This peptide has consequently been regarded as the principal toxic factor in the neurodegeneration of Alzheimer's disease. As such, intense research effort has been directed at determining its source, activity and fate, primarily with a view to preventing its formation or its biological activity, or promoting its degradation. Clearly, much progress has been made concerning its formation by proteolytic processing of the amyloid precursor protein, and its degradation by enzymes such as neprilysin and insulin degrading enzyme. The activities of Abeta, however, are numerous and yet to be fully elucidated. What is currently emerging from such studies is a diffuse but steadily growing body of data that suggests Abeta has important physiological functions and, further, that it should only be regarded as toxic when its production and degradation are imbalanced. Here, we review these data and suggest that physiological levels of Abeta have important physiological roles, and may even be crucial for neuronal cell survival. Thus, the view of Abeta being a purely toxic peptide requires re-evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1819417PMC
http://dx.doi.org/10.1113/jphysiol.2006.111203DOI Listing

Publication Analysis

Top Keywords

physiological roles
8
amyloid beta
8
alzheimer's disease
8
abeta physiological
8
abeta
5
physiological
4
roles amyloid
4
beta peptides
4
peptides alzheimer's
4
disease recognized
4

Similar Publications

Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.

View Article and Find Full Text PDF

The Effects of Nitric Oxide on Choroidal Gene Expression.

J Bioinform Syst Biol

January 2024

Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States.

Purpose: Nitric oxide (NO) is recognized as an important biological mediator that controls several physiological functions, and evidence is now emerging that this molecule may play a significant role in the postnatal control of ocular growth and myopia development. We therefore sought to understand the role that nitric oxide plays in visually-guided ocular growth in order to gain insight into the underlying mechanisms of this process.

Methods: Choroids were incubated in organ culture in the presence of the NO donor, PAPA- NONOate (1.

View Article and Find Full Text PDF

Lactate, long viewed as a byproduct of glycolysis and metabolic waste. Initially identified within the context of yogurt fermentation, lactate's role extends beyond culinary applications to its significance in biochemical processes. Contemporary research reveals that lactate functions not merely as the terminal product of glycolysis but also as a nexus for initiating physiological and pathological responses within the body.

View Article and Find Full Text PDF

Purpose: To explore the relationships between performance variables and physiological variables in a short-time (2-3 min) cycling time trial (TT) on a cycle ergometer.

Methods: Fifteen young elite cyclists (age: 17.3 ± 0.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!