AI Article Synopsis

Article Abstract

The effects of exogenous glycine on homocysteine (HoCys)-induced reductions in chick (Gallus gallus) embryo viability, HoCys-induced increases in brain and hepatic membrane lipid peroxidation, HoCys-induced apoptosis (caspase-3 activities) in brain and hepatic tissues, and HoCys-induced reductions in brain and hepatic S-adenosylemethionine (SAM)/S-adenosylhomocysteine (SAH) levels were studied. Exogenous HoCys caused reductions in percent living embryos and reductions in embryo masses. Exogenous glycine attenuated these HoCys-induced reductions in embryo viability. Brain and liver tissues of HoCys-treated embryos exhibited increased caspase-3 activities, increased lipid hydroperoxide (LPO) levels, and reduced levels of long-chain polyunsaturated membrane fatty acids. While exogenous glycine attenuated HoCys-induced changes in brain caspase-3 activities, brain LPO levels, and brain membrane PUFA levels, exogenous glycine was less effective in attenuating HoCys-induced changes in hepatic caspase-3 activities and hepatic membrane PUFA levels. HoCys-induced reductions in SAM/SAH ratios were observed in brains and livers. Exogenous glycine attenuated HoCys-induced reductions in brain SAM/SAH. However, glycine was unable to attenuate HoCys-induced reductions in hepatic SAM/SAH levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2006.05.005DOI Listing

Publication Analysis

Top Keywords

exogenous glycine
24
hocys-induced reductions
24
caspase-3 activities
16
brain hepatic
12
glycine attenuated
12
attenuated hocys-induced
12
hocys-induced
10
reductions
8
embryo viability
8
brain
8

Similar Publications

Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.

View Article and Find Full Text PDF

Green fluorescent protein (GFP) chromophores are widely studied as fluorescent moieties for sensing and imaging applications. Herein, we present a straightforward synthetic strategy that involves the reaction of glycine amides with 1,3-diketones to form imidazolones through an unusual molecular fragmentation and recombination pathway. Mechanistic investigations, including crossover experiments, inspired a competing strategy that incorporates exogenous ketones into the products, yielding fluorescent GFP chromophore analogues.

View Article and Find Full Text PDF

Glutathione (GSH) is a tripeptide and natural reducing agent composed of glutamic acid, glycine, and cysteine. Its level in the human body is closely linked to human health, such as diabetes, Alzheimer's disease, and cancer. The supplementation of exogenous GSH could bring health benefits and GSH detection in food is of considerable importance.

View Article and Find Full Text PDF

Enhancing the co-utilization of methanol and CO into 1-butanol by equipping synergistic reductive glycine pathway in Butyribacterium methylotrophicum.

Bioresour Technol

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China. Electronic address:

The biological fixation of CO and C1-feedstocks like methanol derived from CO are considered as an important technology combating in global warming issues. The microorganisms that can co-assimilate CO and methanol are highly desired. Here, we constructed a synergistic assimilation pathway in Butyribacterium methylotrophicum (B.

View Article and Find Full Text PDF

Towards sustainable spirulina farming: Enhancing productivity and biosafety with a salinity-biostimulants strategy.

Bioresour Technol

January 2025

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China. Electronic address:

Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!