The effects of exogenous glycine on homocysteine (HoCys)-induced reductions in chick (Gallus gallus) embryo viability, HoCys-induced increases in brain and hepatic membrane lipid peroxidation, HoCys-induced apoptosis (caspase-3 activities) in brain and hepatic tissues, and HoCys-induced reductions in brain and hepatic S-adenosylemethionine (SAM)/S-adenosylhomocysteine (SAH) levels were studied. Exogenous HoCys caused reductions in percent living embryos and reductions in embryo masses. Exogenous glycine attenuated these HoCys-induced reductions in embryo viability. Brain and liver tissues of HoCys-treated embryos exhibited increased caspase-3 activities, increased lipid hydroperoxide (LPO) levels, and reduced levels of long-chain polyunsaturated membrane fatty acids. While exogenous glycine attenuated HoCys-induced changes in brain caspase-3 activities, brain LPO levels, and brain membrane PUFA levels, exogenous glycine was less effective in attenuating HoCys-induced changes in hepatic caspase-3 activities and hepatic membrane PUFA levels. HoCys-induced reductions in SAM/SAH ratios were observed in brains and livers. Exogenous glycine attenuated HoCys-induced reductions in brain SAM/SAH. However, glycine was unable to attenuate HoCys-induced reductions in hepatic SAM/SAH levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2006.05.005 | DOI Listing |
Metabolites
December 2024
Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
Green fluorescent protein (GFP) chromophores are widely studied as fluorescent moieties for sensing and imaging applications. Herein, we present a straightforward synthetic strategy that involves the reaction of glycine amides with 1,3-diketones to form imidazolones through an unusual molecular fragmentation and recombination pathway. Mechanistic investigations, including crossover experiments, inspired a competing strategy that incorporates exogenous ketones into the products, yielding fluorescent GFP chromophore analogues.
View Article and Find Full Text PDFAnal Sci
January 2025
School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China.
Glutathione (GSH) is a tripeptide and natural reducing agent composed of glutamic acid, glycine, and cysteine. Its level in the human body is closely linked to human health, such as diabetes, Alzheimer's disease, and cancer. The supplementation of exogenous GSH could bring health benefits and GSH detection in food is of considerable importance.
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China. Electronic address:
The biological fixation of CO and C1-feedstocks like methanol derived from CO are considered as an important technology combating in global warming issues. The microorganisms that can co-assimilate CO and methanol are highly desired. Here, we constructed a synergistic assimilation pathway in Butyribacterium methylotrophicum (B.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China. Electronic address:
Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!