Characterization of a novel cell penetrating peptide derived from Bag-1 protein.

Peptides

Cancer Immunology and Immunotherapy Center, Saint Savas Hospital, Athens 11522, Greece.

Published: November 2006

A highly cationic peptide (BagP), located within the normally expressed human protein Bag-1, was tested for its capacity to act as a cell penetrating peptide. BagP was found to translocate and transport high molecular weight cargos in several cell types, in varying degrees with a preference for adherent cells. The penetration phenomenon was not found to be subject to saturation for the highest amount of peptide tested (100 microM), whereas the time needed for maximum translocation to be achieved, was cell type-dependent. Finally, BagP internalization depends on its charge, cellular metabolism and cell-surface heparan sulfate proteoglycans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2006.05.021DOI Listing

Publication Analysis

Top Keywords

cell penetrating
8
penetrating peptide
8
peptide bagp
8
characterization novel
4
cell
4
novel cell
4
peptide
4
peptide derived
4
derived bag-1
4
bag-1 protein
4

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

A Cell-penetrating bispecific antibody suppresses hepatitis B virus replication and secretion.

Virus Res

January 2025

Medical Research Center, Yuebei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China; Shenzhen Immuthy Biotech Co., Ltd, 518107, Shenzhen, Guangdong, China. Electronic address:

Hepatitis B virus (HBV) represents one of the major pathogenic factor that leads to chronic liver diseases and the development of hepatocellular carcinoma (HCC). The currently approved anti-HBV drugs cannot eradicate the virus or block the development of HCC. HBV nucleocapsid consists of the hepatitis B core antigen (HBcAg) and the HBV relaxed-circular partially double-stranded DNA (rcDNA), indispensable in virus replication.

View Article and Find Full Text PDF

Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.

View Article and Find Full Text PDF

In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!