DNA repair within the cell nucleus is a dynamic process involving a close interaction between repair proteins and chromatin structure. Recent studies have indicated a quantitative relationship between DNA double-strand break induction and histone H2AX phosphorylation. The dynamics of this process within individual cell nuclei is unknown. To address this, we have used a novel focused ultrasoft X-ray microprobe that is capable of inducing localized DNA damage within a subnuclear area of intact cells with a 2.5-microm-diameter beam spot. The present investigation was undertaken to explore the influence of focused irradiation of individual nuclei with 1.49 keV characteristic aluminum K-shell (AlK) X rays on H2AX phosphorylation in normal human cells. Immunofluorescence analyses revealed that significant diffusion of the initial spots of clustered foci of phosphorylated H2AX occurred in a time-dependent fashion after exposure to AlK X rays. Irradiation under cooled conditions resulted in a reduction in the size of spots of clustered foci of phosphorylated H2AX as well as of individual phosphorylated H2AX foci. These findings strongly suggest that diffusion of the chromatin microenvironment occurs during the repair of DNA damage. We also found that AlK ultrasoft X rays (71 foci per gray) were 2.2-fold more effective at the initial formation of phosphorylated H2AX foci than with conventional X rays (32 foci per gray), and that the time required to eliminate 50% of the initial number of foci was 3.4-fold longer in AlK-irradiated cells than that in cells exposed to conventional X rays. For conventional X rays, we also report significant accumulation of larger-sized foci at longer times after irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RR3577.1DOI Listing

Publication Analysis

Top Keywords

phosphorylated h2ax
16
h2ax phosphorylation
12
conventional rays
12
histone h2ax
8
phosphorylation normal
8
normal human
8
human cells
8
focused ultrasoft
8
ultrasoft rays
8
repair dna
8

Similar Publications

PARylation facilitates the DNA damage repair of Phytophthora sojae in response to host ROS stress.

Int J Biol Macromol

December 2024

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China. Electronic address:

Host plants and various fungicides combat plant pathogens by triggering the release of excessive ROS, leading to DNA damage and subsequent cell death. The mechanisms by which the Phytophthora sojae mitigates ROS stress induced by plant immune responses and fungicides are not well understood. This study investigates the role of PsPARP1A-mediated poly (ADP-ribosylation) (PARylation) in ROS-induced DNA damage responses (DDR).

View Article and Find Full Text PDF

Background And Objective: The role of genetic variants in response to systemic therapy in muscle-invasive bladder cancer (MIBC) is still elusive. We assessed variations in genes involved in DNA damage repair (DDR) before and after cisplatin-based neoadjuvant chemotherapy (NAC) and correlation of alteration patterns with DNA damage and response to therapy.

Methods: Matched tissue from 46 patients with MIBC was investigated via Ion Torrent-based next-generation sequencing using a self-designed panel of 30 DDR genes.

View Article and Find Full Text PDF

USP14 inhibition by degrasyn induces YAP1 degradation and suppresses the progression of radioresistant esophageal cancer.

Neoplasia

December 2024

Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China. Electronic address:

Background: Radiotherapy is a major modality for esophageal cancer (ESCA) treatment, yet radioresistance severely hampers its therapeutic efficacy. Ubiquitin-specific peptidase 14 (USP14) is a novel deubiquitinase and can mediate cancer cells' response to irradiation, although the underlying mechanism remains unclear, including in ESCA.

Methods: To evaluate the expression of USP14 in ESCA tissues or cells, we used RNA-Seq, immunoblotting, co-immunoprecipitation (Co-IP), ubiquitination, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence assays in this investigation.

View Article and Find Full Text PDF

Background: Photodynamic Therapy (PDT) is a therapeutic modality that combines the application of a photoactive compound (photosensitizer, PS) with low-power light to generate reactive oxygen species in the target tissue, resulting in cytotoxic damage and cell death, while sparing adjacent tissues. The objective of this study was to evaluate the phototoxicity of a cyanine dye with two chromophores (biscyanines, BCD) in systems with varying levels of cellular organization, and we used the Photogem® (a photosensitizer approved by the Brazilian ANVISA agency for clinical use in Photodynamic Therapy) as a positive control.

Materials And Methods: The cytotoxicity of the compounds was assessed in vitro in 2D monolayers, 3D spheroid cultures, and artificial skin models.

View Article and Find Full Text PDF

53BP1, a known chromatin-associated factor that promotes DNA damage repair, is differentially modulated during bovine herpesvirus 1 infection in vitro and in vivo.

Vet Microbiol

January 2025

Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071002,  China; Center for Animal Diseases Control and Prevention of Hebei Province, Shijiazhuang 050035, China. Electronic address:

Bovine herpesvirus 1 (BoHV-1) productive infection induces the formation of DNA double-strand breaks (DSBs), the most severe form of DNA lesions in cultured cells. 53BP1, a chromatin-associated factor, plays an essential role in DNA damage repair. In this study, we demonstrated that BoHV-1 productive infection in bovine kidney (MDBK) cells increased the expression of phosphorylated form of H2AX protein (γH2AX) and promoted the formation of γH2AX foci in the nucleus, indicative of enhanced DNA lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!