Data have been collected and physical and statistical models have been constructed to estimate unknown occupational radiation doses among 90,000 members of the U.S. Radiologic Technologists cohort who responded to a baseline questionnaire during the mid-1980s. Since the availability of radiation dose data differed by calendar period, different models were developed and applied for years worked before 1960, 1960- 1976 and 1977-1984. The dose estimation used available film-badge measurements (approximately 350,000) for individual cohort members, information provided by the technologists on their work history and protection practices, and measurement and other data derived from the literature. The dosimetry model estimates annual and cumulative occupational badge doses (personal dose equivalent) for each technologist for each year worked from 1916 through 1984 as well as absorbed doses to organs and tissues including bone marrow, female breast, thyroid, ovary, testes, lung and skin. Assumptions have been made about critical variables including average energy of X rays, use of protective aprons, position of film badges, and minimum detectable doses. Uncertainty of badge and organ doses was characterized for each year of each technologist's working career. Monte Carlo methods were used to generate estimates of cumulative organ doses for preliminary cancer risk analyses. The models and predictions presented here, while continuing to be modified and improved, represent one of the most comprehensive dose reconstructions undertaken to date for a large cohort of medical radiation workers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR3433.1 | DOI Listing |
J Med Imaging Radiat Sci
January 2025
Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Medical Imaging and Radiotherapy, Rua 5 de Outubro, S. Martinho do Bispo, Coimbra 3046-854, Portugal. Electronic address:
Background: Currently, there is an increase in procedures across various clinical specialties involving the use of ionising radiation.
Objective: The primary objective of this systematic review is to analyse and compare the existing literature regarding the effectiveness of leaded glasses for healthcare professionals.
Methods: Comprehensive literature searches were conducted for relevant studies published between 2018 and 2023 using the Scopus, PubMed, and Web of Science databases according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology.
Arch Dermatol Res
January 2025
Department of Dermatology and Venereology, Faculty of Medicine, Tanta University, Tanta, Egypt.
Psoriasis is a chronic inflammatory skin condition characterized by hyperproliferation of keratinocytes and immune dysregulation. Narrow band ultraviolet B (NB-UVB) phototherapy is a common treatment for psoriasis due to its efficacy and safety profile. NOD2 is an intracellular pattern recognition receptor involved in immune responses and inflammation, and its expression is elevated in psoriatic skin.
View Article and Find Full Text PDFRadiat Environ Biophys
December 2024
Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON, K1A 1C1, Canada.
The Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM) have been developed to manage radiation doses received in workplaces involving NORM, such as mineral extraction and processing, oil and gas production, metal recycling or water treatment facilities. This management strategy works well for most naturally occurring radioactive materials in workplaces, with the exception of radon. Radon is a naturally occurring radioactive gas generated by the decay of uranium-bearing minerals in rocks and soils.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Otemae, Chuo-ku, Osaka, Osaka, 5400008, JAPAN.
Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.
View Article and Find Full Text PDFJ Bronchology Interv Pulmonol
April 2025
Thoracic Surgery, BASS Medical Group, Walnut Creek, CA.
Background: This study aimed to quantify radiation doses during navigational bronchoscopy procedures, comparing them with reported cohorts and evaluating the LungVision (Body Vision Medical Inc.) system's efficacy in dose reduction.
Methods: This retrospective observational study included 52 consecutive navigational bronchoscopy cases, categorized into 4 imaging groups based on the C-arm: Cios Spin (Siemens Healthineers), or OEC 9900 (GE HealthCare); and the 3D tomographic imaging algorithm: Cios Spin's onboard imaging, or LungVision's AI-driven imaging.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!