A pseudorotaxane consisting of a 24-membered crown ether and secondary ammonium salt with the hydroxy group at the terminus was quantitatively acylated by bulky acid anhydride in the presence of tributylphosphane as catalyst to afford the corresponding rotaxane in high yield. Large-scale synthesis without chromatographic separation was easily achieved. The ammonium group in the resulting rotaxane was quantitatively acylated with excess electrophile in the presence of excess trialkylamine. Various N-functionalized rotaxanes were prepared by this sequential double-acylation protocol. 1H NMR spectra and X-ray crystallographic analyses of the rotaxanes showed that the crown ether component was captured on the ammonium group in ammonium-type rotaxane by strong hydrogen-bonding intercomponent interaction. The conformation around the ammonium group was fixed by the hydrogen-bonding interaction. Meanwhile, the conformation of the amide-type rotaxane was determined by the weak CH/pi interaction between the methylene group in crown ether and the benzene ring of the axle component. The N-acylation of ammonium-type rotaxane is useful for the preparation of both functionalized rotaxanes and weak intercomponent interaction-based rotaxanes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo0601563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!