Undecanesulfonate is transported by uncoupling protein-1. Its inability to induce H+ uniport with reconstituted uncoupling protein-1 supports fatty acid cycling hypothesis. Rial et al. [Rial, E., Aguirregoitia, E., Jimenez-Jimenez, J., & Ledesma, A. (2004). Alkylsulfonates activate the uncoupling protein UCP1: Implications for the transport mechanism. Biochimica et Biophysica Acta, 1608, 122-130], have challenged the fatty acid cycling by observing uncoupling of brown adipose tissue mitochondria due to undecanesulfonate, interpreted as allosteric activation of uncoupling protein-1. We have estimated undecanesulfonate effects after elimination of endogenous fatty acids by carnitine cycle in the presence or absence of bovine serum albumin. We show that the undecanesulfonate effect is partly due to fatty acid release from albumin when undecanesulfonate releases bound fatty acid and partly represents a non-specific uncoupling protein-independent acceleration of respiration, since it proceeds also in rat heart mitochondria lacking uncoupling protein-1 and membrane potential is not decreased upon addition of undecanesulfonate without albumin. When the net fatty acid-induced uncoupling was assayed, the addition of undecanesulfonate even slightly inhibited the uncoupled respiration. We conclude that undecanesulfonate does not allosterically activate uncoupling protein-1 and that fatty acid cycling cannot be excluded on a basis of its non-specific effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2006.05.011 | DOI Listing |
Mol Cell Endocrinol
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary. Electronic address:
Brown and beige adipocytes express uncoupling protein-1 (UCP1), which is located in the inner mitochondrial membrane and facilitates the dissipation of excess energy as heat. The activation of thermogenic adipocytes is a potential therapeutic target for treating type 2 diabetes mellitus, obesity, and related co-morbidities. Therefore, identifying novel approaches to stimulate the function of these adipocytes is crucial for advancing therapeutic strategies.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-Cre line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain.
PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.
View Article and Find Full Text PDFNat Commun
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!