A novel electrochemical technique for lipopolysaccharide (LPS) detection has been developed using a combination of ferrocenylboronic acid derivatives and an enzyme-modified electrode. The enzyme-modified electrode was constructed from a gold electrode modified with a bovine serum albumin membrane containing diaphorase. Ferrocenylboronic acid derivatives are oxidized on the electrode, and then regenerated by a diaphorase-catalyzed reaction in the presence of NADH. The consumption/regeneration cycle for ferrocenylboronic acid derivatives resulted in a chemically amplified current response. The current response for ferrocenylboronic acid derivatives decreased in association with its complexation with glycosyl units of LPS, and this current decrease caused by LPS was also amplified by the recycling process. On the other hand, the addition of a monosaccharide such as D-mannose or D-galactose induced no response at the same LPS concentration. The enzyme membrane immobilized on the electrode plays an important role in selectivity as well as chemical amplification. In addition, the enzyme-modified electrode exhibited a rapid response of 5 min for LPS, which is much faster than the currently used method. The detection limit of LPS from Escherichia coli O127:B8 was as low as 50 ng ml-1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2006.05.020DOI Listing

Publication Analysis

Top Keywords

ferrocenylboronic acid
20
acid derivatives
16
enzyme-modified electrode
12
current response
8
lps
6
electrode
6
ferrocenylboronic
5
acid
5
electrochemically amplified
4
amplified detection
4

Similar Publications

Pd-catalysed Stille and Suzuki cross-couplings were used to prepare 9-(3-indenyl)-, 6, and 9-(2-indenyl)-anthracene, 7; addition of benzyne led to the 9-Indenyl-triptycenes, 8 and 9. In 6, [4 + 2] addition also occurred to the indenyl substituent. Reaction of 6 through 9 with Cr(CO) or Re(CO) gave their M(CO) derivatives, where the Cr or Re was complexed to a six- or five-membered ring, respectively.

View Article and Find Full Text PDF

An unprecedented synthesis of 8-substituted-borondipyrromethenes is described starting from 8-thiomethylbodipy 1. Aryl, heteroaryl, alkenyl, and organometallic boronic acids smoothly reacted with 1 in the presence of a catalytic amount of Pd(0) and a stoichiometric amount of Cu(I)-2-thienylcarboxylate under neutral conditions to give the corresponding Bodipy analogues in good to quantitative yields (20 examples). A remarkable reactivity was observed in some cases, e.

View Article and Find Full Text PDF

Photosensitization and the photocurrent switching effect in nanocrystalline titanium dioxide functionalized with iron(II) complexes: a comparative study.

Chemistry

September 2007

Centrum Nanochemii Nieorganicznej, Wydział Chemii, Uniwersytet Jagielloński, ul. Romana Ingardena 3, 30-060 Kraków, Poland.

Selected iron(II) complexes (ferrocene, ferrocenylboronic acid, hexacyanoferrate(II)) have been used as photosensitizers of titanium dioxide. Various types of electronic interactions between the surface complex and the semiconducting support are reflected in different yields of photocurrent generated upon visible-light irradiation and different efficiencies of the photosensitization effect. The studied systems, showing the photocurrent switching upon changes of electrode potential and energy of photons (the PEPS effect), are good models of simple photoelectrochemical logic devices.

View Article and Find Full Text PDF

Electrochemically amplified detection for lipopolysaccharide using ferrocenylboronic acid.

Biosens Bioelectron

February 2007

JST-CREST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.

A novel electrochemical technique for lipopolysaccharide (LPS) detection has been developed using a combination of ferrocenylboronic acid derivatives and an enzyme-modified electrode. The enzyme-modified electrode was constructed from a gold electrode modified with a bovine serum albumin membrane containing diaphorase. Ferrocenylboronic acid derivatives are oxidized on the electrode, and then regenerated by a diaphorase-catalyzed reaction in the presence of NADH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!