The present study highlights the fact that the effect of additives (urea, monomethylurea, thiourea) on the supramolecular assemblies and proteins is strikingly similar. To investigate the effect, a viscometeric study on sphere-to-rod transition (s-->r) was undertaken in a system (3.5% tetradecyltrimethylammonium bromide+0.05 M NaBr + 1-pentanol [P.M. Lindemuth, G.L. Bertand, J. Phys. Chem. 97 (1993) 7769]) in the presence and absence of the said additives. [1-pentanol] needed for s-->r (i.e. [1-pentanol]s-->r) was determined from the relative viscosity versus [1-pentanol] profiles. It was observed that the additives preponed as well as postponed s-->r depending upon their nature and concentrations. These effects are explained in terms of increased polarity of the medium and the adsorption ability of urea/monomethylurea on the charged surfactant monomers of the micelle. In case of thiourea, postponement of s-->r was observed throughout which is attributed to its structure. To derive an analogy between micelles and proteins the additive-induced conformational changes of the protein, bovine serum albumin (BSA) was taken to monitor secondary structural changes and tryptophanyl fluorescence. A marked increase in secondary structure (far-UVCD) and increased tryptophanyl fluorescence with a marked blue shift in lambdamax was observed in presence of low concentrations of urea or alkylurea. This indicates that a more compact environment is created in presence of these additives, if added judiciously. Addition of thiourea to BSA caused a marked quenching without any significant change in lambdamax. The large decrease in tryptophanyl emission in presence of low thiourea concentrations seems to be specific and related to thiourea structure as no corresponding changes were observed in urea/alkylurea. All these effects pertaining to protein behavior fall in line with that of morphological observations on the present as well as surfactant systems studied earlier [S. Kumar, N. Parveen, Kabir-ud-Din, J. Phys. Chem. B 108 (2004) 9588].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2006.04.020 | DOI Listing |
J Phys Chem A
January 2025
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.
This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Nuclear Waste Disposal Research & Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.
Fluid-silica interfaces are ubiquitous in chemistry, occurring in both natural geochemical environments and practical applications ranging from separations to catalysis. Simulations of these interfaces have been, and continue to be, a significant avenue for understanding their behavior. A constraining factor, however, is the availability of accurate force fields.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!