The present study investigates the roles of the spinal phosphoinositide 3-kinase (PI3K) signaling pathway in naloxone-precipitated withdrawal in acute and chronic morphine-dependent mice. There are two principal findings: (1) intrathecal pretreatment with wortmannin or LY294002, two structurally unrelated PI3K inhibitors, produced a dose-dependent increase of naloxone-precipitated withdrawal jumping, which was accompanied by an increased expression of spinal Fos protein in acute and chronic morphine-dependent mice; and (2) the expression of spinal p110gamma, the catalytic subunit PI3K, in the membrane fraction was significantly down-regulated by naloxone-precipitated withdrawal in acute and chronic morphine-dependent mice. This study provides new evidence showing that inactivation of the PI3K signaling pathway in the spinal cord may be involved in the expression of morphine withdrawal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2006.05.056DOI Listing

Publication Analysis

Top Keywords

naloxone-precipitated withdrawal
12
acute chronic
12
chronic morphine-dependent
12
morphine-dependent mice
12
spinal phosphoinositide
8
phosphoinositide 3-kinase
8
morphine withdrawal
8
pi3k signaling
8
signaling pathway
8
withdrawal acute
8

Similar Publications

Synaptic Structure and Transcriptomic Profiling of Reward and Sensory Brain Areas in Male Mice of Fentanyl Addiction.

Subst Abuse Rehabil

December 2024

The Joint Innovation Center for Health & Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Background: Opioid-based medications are powerful analgesics commonly prescribed for pain management, but they are also highly addictive. The over-prescription of opioids analgesics has triggered current opioid crisis, which now has expanded to heroin and illicit synthetic opioids like fentanyl and its analogues. The side effects of fentanyl abuse have been well recognized, yet the underlying molecular adaptations across brain regions upon fentanyl exposure remain elusive.

View Article and Find Full Text PDF

Region-specific neuroadaptations of CRF1 and CRF2 expression following heroin exposure in female rats.

Pharmacol Biochem Behav

December 2024

Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA. Electronic address:

Article Synopsis
  • - Stress increases the risk of addiction and the role of corticotropin releasing factor (CRF) is critical, but how CRF1 and CRF2 receptors impact heroin use is not fully understood.
  • - In a study involving female rats, blocking CRF1 and CRF2 receptors reduced heroin self-administration, highlighting their importance in drug-seeking behavior.
  • - Chronic heroin exposure caused specific changes in CRF receptor expression in different brain regions, suggesting that these neuroadaptations may contribute to ongoing drug use and withdrawal symptoms.
View Article and Find Full Text PDF

Fentanyl exposure alters rat CB1 receptor expression in the insula, nucleus accumbens and substantia nigra.

Neurosci Lett

January 2025

Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA. Electronic address:

Prolonged periods of opioid use have been shown to cause neuroadaptations in the brain's reward circuitry, contributing to addictive behaviors and drug dependence. Recently, considerable focus has been placed on the role of the endocannabinoid system (ECS) and its CB receptors in opioid-driven behaviors. However, opioid-induced neuroadaptations to the ECS remain understudied.

View Article and Find Full Text PDF

Preclinical evaluation of abuse potential of the peripherally-restricted kappa opioid receptor agonist HSK21542.

Regul Toxicol Pharmacol

December 2024

Saifu Laboratories Co., Ltd., Beijing, China; SAFE Medical Technology Co., Ltd., Hebei, China. Electronic address:

Article Synopsis
  • HSK21542 is a kappa opioid receptor (KOR) agonist designed for pain relief and has been assessed for its potential for abuse prior to approval.
  • The preclinical studies involved various tests in rats, including self-administration, drug discrimination, conditioned place preference, and withdrawal assessments, to evaluate its reinforcing effects and dependence potential.
  • Results indicated that HSK21542 showed no behavioral signs of abuse or dependence, suggesting it has a low potential for abuse in humans.
View Article and Find Full Text PDF

YTHDF1 in periaqueductal gray inhibitory neurons contributes to morphine withdrawal responses in mice.

BMC Med

September 2024

Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.

Background: Physical symptoms and aversion induced by opioid withdrawal strongly affect the management of opioid addiction. YTH N6-methyladenosine (mA) RNA binding protein 1 (YTHDF1), an mA-binding protein, from the periaqueductal gray (PAG) reportedly contributes to morphine tolerance and hyperalgesia. However, the role of YTHDF1 in morphine withdrawal remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!