A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ligand-activated PPARbeta efficiently represses the induction of LXR-dependent promoter activity through competition with RXR. | LitMetric

Ligand-activated PPARbeta efficiently represses the induction of LXR-dependent promoter activity through competition with RXR.

Mol Cell Endocrinol

Laboratory of Metabolism, Building 37, Room 3106, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.

Published: August 2006

Angiopoietin-like protein 3 (angptl3), a member of the vascular endothelial growth factor family, was shown to play an important role in regulating lipid metabolism. To elucidate the mechanism by which PPARbeta represses angptl3 promoter activity, reporter constructs were prepared and transfection analysis carried out. PPARbeta repressed angptl3-Luc promoter activity and activation of PPARbeta by L-165041, a PPARbeta-specific ligand, increased the extent of repression. The repression by L-165041 was lost in angptl3-Luc plasmids having a deleted or mutated LXRalpha binding site (DR4). PPARbetaL405R, deficient in RXRalpha binding, had no effect on angptl3-Luc promoter activity. PPARbeta did not repress the activity of GAL4-LXRalpha which activates of GAL4DBD TK-Luc independent of RXR. Addition of RXRalpha completely abolished the repression of angptl3-Luc activity by PPARbeta. Mammalian two-hybrid analysis revealed that PPARbeta ligand binding enhanced the dissociation of the LXRalpha-RXRalpha heterodimer. Gel shift assays also indicated that PPARbeta ligand binding increased dissociation of LXRalpha/RXRalpha binding to a DR4 oligonucleotide probe; addition of RXRalpha restored the binding lost by addition of PPARbeta. Collectively, these results suggest that the binding of PPARbeta-specific ligand enhances the affinity between RXRalpha and activated PPARbeta and thus may regulate angptl3 gene expression through a DR4 element by competing with LXRalpha for RXRalpha.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1544360PMC
http://dx.doi.org/10.1016/j.mce.2006.05.005DOI Listing

Publication Analysis

Top Keywords

promoter activity
16
pparbeta
9
angptl3-luc promoter
8
pparbeta-specific ligand
8
activity pparbeta
8
addition rxralpha
8
pparbeta ligand
8
ligand binding
8
binding
7
activity
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!