Prediction of summation in incompletely fused tetanic contractions of rat muscle.

J Biomech

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alta, Canada T2N 1N4.

Published: May 2007

AI Article Synopsis

Article Abstract

Summation is the accumulating contractile force resulting from sequential activations applied to a muscle without sufficient interval to permit complete relaxation. The purpose of this study was to evaluate summation in the rat medial gastrocnemius muscle, and to determine if the contractile responses during summation could be predicted from the relationship between force and activation pattern. In the first part of this study, the consistency of summation in the rat gastrocnemius muscle was assessed and prediction equations were derived. The second part compared predicted summation with actual contractions obtained in a new set experiments. Summation was assessed by calculation of the contractile response, per stimulation, for up to five stimulating pulses at these frequencies: 20, 40, 60 and 80Hz. This was done by subtraction of the force transient for j-1 pulses of stimulation (where j=1-5 pulses) from the force response with j pulses of stimulation. Each of these force differences was evaluated for peak rate of force development, contraction time and half-relaxation time. Contraction and half-relaxation times changed by only a small magnitude from values obtained for the twitch. Peak rate of force development was proportional to the active force for all force transients obtained by subtraction. The force per activation increased from the first to the fifth stimulus, and was dependent on interpulse delay. In the second series of experiments, the predicted force was related to the actual force for brief tetanic contractions at 40, 50 and 60Hz (r(2)=0.875). These experiments demonstrate that the force response to sequential activations is consistent and predictable. Summation can be predicted, knowing only the amplitude of the twitch contraction and the relationship between delay and force for each activating stimulus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2006.04.009DOI Listing

Publication Analysis

Top Keywords

force
14
tetanic contractions
8
sequential activations
8
summation rat
8
gastrocnemius muscle
8
summation predicted
8
force activation
8
subtraction force
8
pulses stimulation
8
force response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!