Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coronary arteries are the most disease prone arteries in the circulation and are characterized by unique hemodynamic features, wherein wall shear stress (WSS) induced by blood flow and circumferential strain (CS) driven by pressure are highly out-of-phase temporally (asynchronous hemodynamics). To investigate whether there is a correlation between asynchronous hemodynamics and pathology in vivo, we examined endothelial cell (EC) gene expression and nuclear morphology in two distinct hemodynamic regions of male New Zealand rabbits: coronary arteries (left anterior descending artery cLAD), and aorta (aortic arch inner curvature, outer curvature, and straight descending aorta). En face imaging showed strong similarities in EC nuclear length:width ratio and angle of orientation in the cLAD and aorta. Real-time RT-PCR, however, showed that coronary arteries had significantly reduced (>5-fold) eNOS mRNA levels compared to all aortic regions, while ET-1 showed an opposite trend ( approximately 2.5-fold). Coronary arteries with characteristic asynchronous hemodynamics displayed pro-atherogenic eNOS and ET-1 gene expression profiles while the EC nuclei morphology did not differ from non-atherogenic regions in the aorta. This study demonstrates a correlation between asynchronous hemodynamics and pro-atherogenic gene expression patterns in vivo that is induced by hemodynamics inherent to the circulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.atherosclerosis.2006.05.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!