Hydra is a classical model organism to understand fundamental developmental biological processes such as regeneration and axis formation. Here, we show that two genes which share some similarity with members of the Dickkopf family of proteins, HyDkk1/2/4-A and HyDkk1/2/4-C, are co-expressed in gland cells and regulated by the positional value gradient. While HyDkk1/2/4-A is expressed throughout the gastric region, HyDkk1/2/4-C has a graded expression pattern with a high level of transcripts just below the tentacle zone and absence of expression in the budding zone. Blocking the activity of GSK-3beta caused a drastic downregulation of HyDkk1/2/4-C expression in the gastric tissue. Experimental reduction of the number of HyDkk1/2/4-C-expressing cells resulted in expansion of the HyWnt expression domain in the hypostome. Thus, similar to Dickkopf proteins in vertebrates, one of the functions of HyDkk1/2/4-C in hydra may be to antagonize Wnt signalling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2006.04.003DOI Listing

Publication Analysis

Top Keywords

positional gradient
8
dickkopf genes
4
genes components
4
components positional
4
gradient hydra
4
hydra hydra
4
hydra classical
4
classical model
4
model organism
4
organism understand
4

Similar Publications

Background: The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this.

View Article and Find Full Text PDF

How to distribute a set of points uniformly on a spherical surface is a longstanding problem that still lacks a definite answer. In this work, we introduce a physical measure of uniformity based on the distribution of distances between points, as an alternative to commonly adopted measures based on interaction potentials. We then use this new measure of uniformity to characterize several algorithms available in the literature.

View Article and Find Full Text PDF

Plant-plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species.

View Article and Find Full Text PDF

Background: Coronary artery disease (CAD) comprises one of the leading causes of morbidity and mortality both in the European population and globally. All established clinical risk stratification scores and models require blood lipids and physical measurements. The latest reports of the European Commission suggest that attracting health professionals to collect these data can be challenging, both from a logistic and cost perspective, which limits the usefulness of established models and makes them unsuitable for population-wide screening in resource-limited settings, i.

View Article and Find Full Text PDF

There is a new awareness of the widespread nature of metabolic dysfunction-associated steatotic liver disease (MASLD) and its connection to cardiovascular disease (CVD). This has catalyzed collaboration between cardiologists, hepatologists, endocrinologists, and the wider multidisciplinary team to address the need for earlier identification of those with MASLD who are at increased risk for CVD. The overlap in the pathophysiologic processes and parallel prevalence of CVD, metabolic syndrome, and MASLD highlight the multisystem consequences of poor cardiovascular-liver-metabolic health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!