We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2006.6.439DOI Listing

Publication Analysis

Top Keywords

martian dust
8
dust devils
8
devils storms
8
surface mars
8
electric fields
8
h2o2
7
surface
6
mars
5
oxidant enhancement
4
enhancement martian
4

Similar Publications

Utilizing Martian samples for future planetary exploration-Characterizing hazards and resources.

Proc Natl Acad Sci U S A

January 2025

Division of Space, Ecological, Arctic, and Resource-limited (SPEAR) Medicine, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114.

One of the most surprising and important findings of the first human landings on the Moon was the discovery of a very fine layer of lunar dust covering the entire surface of Moon along with the negative impacts of this dust on the well-being and operational effectiveness of the astronauts, their equipment, and instrumentation. The United States is now planning for human missions to Mars, a planet where dust can also be expected to be ubiquitous for many or most landing sites. For these missions, the design and operations of key hardware systems must take this dust into account, especially when related to crew health and safety.

View Article and Find Full Text PDF

Analytical data on three Martian simulants.

Data Brief

December 2024

Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, 35131 Padova, (PD), Italy.

The preparation of planetary missions as well as the analysis of their data require a wide use of planetary simulants. They are very important for both testing mission operations and payloads, and for interpreting remote sensing data. In this work, a detailed analysis of three commercially available simulants of Martian dust and regolith is presented.

View Article and Find Full Text PDF

Atmospheric turbulence, irregular fluctuations of the fluid state, is studied on Mars. Universality of the turbulence spectrum underpins atmospheric models where computational requirements preclude full fidelity simulations of the smallest scales. However, there are discrepancies among reports on the existence and spectral location of universal scaling in Martian atmospheric data.

View Article and Find Full Text PDF
Article Synopsis
  • Protecting mechanical parts from dust is essential for Moon and Mars missions; this study analyzes how lunar and Martian regolith affects abrasion using specific tests.
  • Results showed friction coefficients stabilized between 0.2 and 0.4 across all simulants, with Martian regolith causing less abrasion than lunar regolith.
  • The abrasion mechanism involved micro-ploughing and micro-cutting, resulting in different wear patterns on the materials tested.
View Article and Find Full Text PDF

The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!